深度学习用于医学预后-第二课第四周18-20节-使用Harrell C-Index评估生存模型

在本课程中,您将学习如何使用Harrell Concordance Index来评估生存模型的性能。

在之前,您已经计算过常规的Concordance Index(C-index)。现在您将学习当您处理生存数据时如何修改这个计算方法。这个最终工具将允许您评估您所学到的生存模型。

在本课中,我们将讨论使用Harrell C-Index评估生存模型的方法。我们已经看到了评估预后模型的设置。

之前我们在研究一个10年内死亡的风险,我们会为死亡率在10年内的结果是"是"或者"否",并通过模型输出风险分数。我们发现C-Index,它考虑了成对比较,查看有多少对是一致的,有多少对是相等的(risk tie),并将其除以这些成对比较中的总对数。

对C-Index忘记了的同学,请点击下面链接回顾👇
C-Index

生存模型和我们之前看到的设置有两个主要的不同之处。第一个区别是我们关心建模的真实目标是事件时间,我们将其称为大写字母T。对于患者,我们有一个时间,例如30个月,表示患者的一个事件。第二个关键区别是我们的数据中有删失的观测数据,并且我们需要考虑如何在我们的评估中处理这些删失数据。

首先,让我们再次看看一致性(concordance)的概念。一致性是指最坏结果的患者应该具有较高的风险分数。

现在我们可以思考一下时间到事件的问题,更坏的结果意味着什么?

我们可以看到,如果一个患者早期发生了事件,那么他的结果将更坏。例如,左边患者在20个月时发生了事件,而右边患者在40个月时才发生事件,那么结果更糟糕的是生存时间更短的患者,因此我们应该为这个左边患者分配更高的风险分数。

因此,上图是成对一致的,因为它遵循了这个规则。

现在当我们的时间相同时,我们希望理想的风险分数表明两个人的风险是相同的。因此这又是一个一致的案例。

假设我们有两个不同的时间到事件,但更糟糕的结果得到了较低的风险分数这就是不一致(not concordant)。

这是另一个风险类型的例子,其中我们有两个不同的时间到事件,但是我们有相同的风险分数。如果我们有两个病人的风险分数相同,但是他们的时间到事件不同,这将是一种风险平局(risk tie)的例子。

这也是一个风险平局的例子,其中我们有两个患者的时间到达事件相同,而我们说其中一个患者的风险分数小于其他患者。理想情况下,我们应该具有相同的风险分数,但它也不完全错误。所以我们将其称为risk tie。

允许和不允许配对


如果时间相同,风险不同,我们认为这是一个可允许对(permissible pairs)。

让我们看下面这个例子。有我们的第一个被删失的观测值,这是40+。因此,我们知道在40岁之前,这个患者没有经历任何事件,但他们之后又发生了事件。所以现在我们真的可以比较谁在这里的结果最差吗?

结果证明患者A显然有最坏的结果,因为右边比左边活得长,即使我们没有看到他们是否发生了事件,如果他们有任何事件,我们知道他们的结果肯定更好。

现在左边是被删失了,这种情况下我们是无法进行比较的。因此是不允许配对

两个数据都删失了,也是不允许配对的,不管删失的时间是不是相同。

那总结一下,哪些情况是允许配对的呢?

可能的允许配对


这一节就不废话了,直接看图中的情况,实心点表示有时间发生,空圈表示删失。线的长度代表时间。

不清楚的,可以看上面的例子。

最后,我们最后的Harrell C-Index公式👇

文章持续更新,可以关注微信公众号【医学图像人工智能实战营】获取最新动态,一个关注于医学图像处理领域前沿科技的公众号。坚持已实践为主,手把手带你做项目,打比赛,写论文。凡原创文章皆提供理论讲解,实验代码,实验数据。只有实践才能成长的更快,关注我们,一起学习进步~

我是Tina, 我们下篇博客见~

白天工作晚上写文,呕心沥血

觉得写的不错的话最后,求点赞,评论,收藏。或者一键三连
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Tina姐

我就看看有没有会打赏我

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值