Monai
文章平均质量分 87
Tina姐
微信公众号【医学图像人工智能实战营】,医学图像处理领域,坚持已实践为主,手把手带你做项目,打比赛,写论文。
展开
-
MONAI 1.4新版本发布,抢先体验MAISI扩散模型以及VISTA交互式分割模型
MONAI 1.4新版本发布,抢先体验MAISI扩散模型以及VISTA交互式分割模型上周,MONAI发布了备受期待的1.4版本,这是时隔一年的重大更新。:这是一个最先进的3D潜在扩散模型(3D Latent Diffusion Model),专为生成高质量的合成CT图像而设计,无论是否带有解剖标注。MAISI在数据增强和创建逼真的医学成像数据方面表现出色,有助于补充因隐私问题或罕见状况而受限的数据集。此外,它还能通过生成多样化和逼真的训练数据,显著提高其他医学成像AI模型的性能。原创 2024-10-25 10:48:58 · 945 阅读 · 0 评论 -
深入解析MONAI DiceLoss函数:作用、使用方法和参数解析
在医学影像分割任务中,Dice Loss是一种常用的损失函数,用于衡量预测分割结果与真实标签之间的相似度。MONAI提供了DiceLoss函数,它是一个重要的工具,用于优化深度学习模型在医学影像分割任务中的性能。本文介绍了其作用、使用方法以及各个参数的含义,希望对医学影像领域的从业者能够更好地利用DiceLoss函数进行模型训练和性能优化,并取得更好的分割效果。然后创建了DiceLoss函数的实例,并在模型训练循环中使用DiceLoss计算损失并进行反向传播优化模型。原创 2024-01-31 17:43:18 · 1169 阅读 · 0 评论 -
深入解析MONAI Auto3dseg函数:功能、使用方法和参数解析
在医学影像领域,自动化的图像分割是一个重要且具有挑战性的任务。为了简化医学影像图像分割的流程,MONAI提供了Auto3dseg函数,它是一个强大的工具,可以自动进行三维图像分割。本文将详细介绍Auto3dseg函数的功能、使用方法以及各个参数的含义。原创 2024-01-31 17:40:16 · 1137 阅读 · 0 评论 -
MONAI-model zoo简要介绍
MONAI Medical Open Network for AI)是一个基于PyTorch开发的医学影像人工智能框架。MONAI提供了许多预先训练好的模型,这些模型可以直接在不同的医学影像数据集上进行微调和预测,避免了从头开始训练模型的麻烦。MONAI中的model zoo包括了一系列2D和3D图像分割、分类、生成等任务的预训练模型。原创 2024-01-31 17:34:19 · 1558 阅读 · 0 评论 -
从三维图像中抽取2D样本进行训练-MONAI实战
从三维图像中抽取样本进行2D网络训练-MONAI实战在医学影像分析的任务中,有时需要从三维(3D)图像数据中提取二维(2D)样本进行训练。这是因为2D卷积神经网络可以更方便地处理和分析2D数据,而且使用2D样本可以减少训练时间和计算成本。然而,从3D数据中提取2D样本并不是一件容易的事情。本教程向您展示如何使用 3D inputs 中采样2D样本训练网络。这是一个完整的2D分割教程,包含数据生成,预处理,训练以及推理主要用到的功能函数:monai的和进行2D切片的抽样。以及在推理中使用将2D切片分割后再组合原创 2024-01-31 17:10:28 · 1972 阅读 · 0 评论 -
使用 MONAI 加载和保存各种格式的医学图像
本教程属于实战,手把手教你加载各种医学图像数据(nii.gz, .dcm, .png等)。并学会查看医学图像数据的元数据(shape, affine, orientation)。学会使用monai全方位了解你的数据,并把它用于之后的深度学习训练。以及学会保存transform处理后的图像以及分割结果。干货很多,动手跟着一起来。查看本教程前,请自行下载,边跑代码边看教程,学习效率更高哦。原创 2024-01-08 00:47:24 · 2209 阅读 · 0 评论 -
使用monai.visualize.utils.matshow3d函数展示3D医学图像
函数是 MONAI 包中用于可视化 3D 图像数据的一个实用工具函数。它可以在平面中显示一个或多个3D图像,并提供一些参数来控制显示的方式和外观。先导入需要的包例如我们显示1个大小为10x10x10的图像再比如我们显示2个大小为10x10x10的图像接下来,我们再以真实的CT腹部图像案例,来学习一些更高阶的用法。原创 2024-01-07 17:51:43 · 765 阅读 · 1 评论 -
全面解析MONAI Transforms的用法 视频+教程+代码
MONAI是一个基于PyTorch的开源框架,用于医疗影像的深度学习,属于PyTorch生态系统的一部分。建立一个学术、工业和临床研究人员合作的共同基础社区;创建用于医疗影像的最先进的端到端训练流程;为研究人员提供优化和标准化的方式来创建和评估深度学习模型。在MONAI中,transform是可调用对象,接受来自数据集中初始数据或先前transform 的输入。我们可以直接创建和调用这些transform,而无需进行任何基础设施或系统设置,因为MONAI中的组件设计尽可能解耦。原创 2023-12-18 16:30:37 · 1406 阅读 · 0 评论 -
使用MONAI时,如何选择合适的Dataset加载数据,提升训练速度!
在深度学习中,MONAI(Medical Open Network for AI)是一个专注于医学图像分析的开源框架。它提供了一系列用于医学图像处理和深度学习的工具和函数,其中包括了Dataset函数。Dataset函数是MONAI框架中的一个重要组件,它用于加载和管理医学图像数据集,并提供了数据增强、预处理和批处理等功能。原创 2023-12-06 14:07:07 · 844 阅读 · 0 评论 -
使用MONAI轻松加载医学公开数据集,包括医学分割十项全能挑战数据集和MedMNIST分类数据集
为了快速开始使用公开的数据集(如 MedNIST 和 DecathlonDataset),MONAI 提供了几个开箱即用的函数(例如),其中包括数据下载,解压以及创建dataset(继承了MONAI 的 CacheDataset,训练的时候数据加载的嘎嘎快)。预定义数据集的常用工作流程:本次以为例,说明如何在MONAI中使用这些数据,并简要介绍这些数据集。原创 2023-11-22 00:13:50 · 1373 阅读 · 0 评论 -
将随机数设成3407,让你的深度学习模型再涨一个点!文再附3种随机数设定方法
深度学习已经在计算机视觉领域取得了巨大的成功,但我们是否曾想过为什么同样的模型在不同的训练过程中会有不同的表现?在对10000个种子的扫描中,作者获得了接近2%的最大和最小精度差异,这高于计算机视觉社区通常使用的重要阈值。答:是,它当然减少了由于使用不同种子而产生的差异,但并没有抹去这种差异,在Imagenet上,最大和最小准确度之间的差异仍然有0.5%这么长的代码,每次都要敲一遍,或者粘贴复制也很麻烦。下面进行简单地分析。原创 2023-11-14 00:14:24 · 1277 阅读 · 0 评论 -
在医疗影像领域,生成式模型可以做些什么?用什么平台快速实现?使用MONAI框架进行生成式模型开发
生成模型具有巨大的潜力,不仅有助于通过合成数据集安全地共享医疗数据,还可以执行一系列逆向应用,如异常检测、图像到图像翻译、去噪和MRI重建。然而,由于这些模型的复杂性,它们的实现和再现性可能很困难。对于我这种代码能力薄弱的研究者,需要有医学数据相关的现成代码借鉴参考,才能做实验。这时候,必须要大赞一下MONAI平台啦。提供了各种相关的模型和demo。原创 2023-11-09 08:43:37 · 527 阅读 · 2 评论 -
[理论+实操] MONAI&PyTorch 如何进行分布式训练,详细介绍DP和DDP
优秀的炼丹师再也不满足单张GPU训练了,总想要迭代的再快点,batchsize再大点。能用3D model 绝不用2D,完了!内存超了,咋办?急, 在线等!!原创 2022-10-09 19:52:20 · 1009 阅读 · 0 评论 -
MONAI 叒叒叒更新了(1.0版本),这次在分割,联邦学习,病理图像,MRI重建上有动作
MONAI 此次更新大部分基于 MONAI Bundle。在分割模块,新增了一个Auto3DSegapp, 将数据处理,模型选择,训练和评估等集合在一起。此外还提供了联邦学习,为数字病理图像新增了MetaTensor,提供更多元数据属性。在MRI数据重建模块,也新增了一些功能。接下来,具体了解一下,有没有你感兴趣的内容~内容概览。原创 2022-09-19 10:23:33 · 1474 阅读 · 0 评论 -
如何使用MONAI构建多分类dataset--直接从文件夹加载数据
如图所示,做多类别分类,每个文件夹代表一个类别,所有图像均为NIFTI格式,如何加载进 MONAI 进行训练?在这之前,我们来看看 MONAI dataset 加载方法:MONAI dataset 的数据(image, label)输入有两种形式,一种是 array(数组), 一种是dict(字典)。简单区分一下。原创 2022-09-13 16:45:58 · 1274 阅读 · 2 评论 -
【论文阅读】MONAI Label:人工智能辅助的 3D 医学图像交互式标注框架
缺乏带注释的数据集是训练监督AI算法的主要挑战,因为手动注释既昂贵又耗时。为了解决这个问题,我们提出了,这是一个免费的开源平台,有助于开发基于AI的应用程序,旨在减少注释3D医学图像数据集所需的时间。通过MONAILabel,研究人员可以开发专注于其专业领域的注释应用程序。它允许研究人员轻松地将他们的应用程序部署为服务,临床医生可以通过他们首选的用户界面使用这些服务。目前,MONAILabel很容易支持本地安装(3DSlicer)和基于Web(OHIF)的前端,并提供两种主动学习。...原创 2022-07-20 18:49:58 · 2762 阅读 · 2 评论 -
MONAI Label -- 使用 AI 加速你的分割标注
MONAILabel是一个服务器-客户端(server-client)系统,通过使用AI促进交互式医学图像标注。它是一个开源且易于安装的生态系统,可以在具有单个或多个GPU的机器上本地运行。服务器和客户端可以设在同一台/不同的机器上工作。它与MONAI适配。大白话讲要使用MONAILabel进行医学数据标注,你需要有2个东西。...原创 2022-07-20 18:47:58 · 3059 阅读 · 0 评论 -
MONAI Label 安装流程及使用攻略
这部分为monailabel的安装实操,分为服务端安装和客户端安装。预祝大家顺利安装。如果遇到问题,可以在交流群里探讨。在开始前,可以把以下链接打开,原创 2022-07-20 18:42:22 · 4040 阅读 · 5 评论 -
MONAI版本更新到 0.9 啦,看看有什么新功能
MONAI 更新到0.9版本了,你用的是多少呢?我们来看看这次有什么重要更新。原创 2022-06-21 09:56:39 · 1292 阅读 · 0 评论 -
使用 load_decathlon_datalist (MONAI)快速加载JSON数据
思考:当你有一个包含数据所有信息的 JSON 文件的时候,怎么加载到 MONAI 框架里面?如图所示,从这个json文件里可以知道数据的label信息,每个类别的真实含义。以及它的模态是CT,图像是3D 并且把训练集、验证集和测试接包含的图像地址都写上了。我们只要通过这个文件就可以把数据喂给模型。在 MONAI 里确实提供了加载 json 格式数据的方式。非常方便。同理,我们可以把自己的数据也写成 json 格式加载。本节教程将涉及这两个内容,感兴趣的一起来看看吧load_decathlon.原创 2022-05-25 18:51:19 · 1408 阅读 · 1 评论 -
13个医学图像 AI 入门项目- 都跑完你就超神了!
本文介绍 MONAI 框架提供的 医学图像方面的教程,基本包括医学图像处理AI方向的各个领域,并且每个教程都是可以跑的通的!可以作为入门的第一项目。主要内容如下文章目录1 二维分类2 二维分割3 三维分类4 三维分割4.1 ignite 版本4.2 torch 版本4.3 BRATS 脑肿瘤多标签三维分割4.4 CT Spleen 脾脏分割4.5 COVID 19-20 挑战赛4.6 btcv 使用transformer分割腹部多器官5 二维配准6 三维配准7 Autoencoder 自编码器8 GAN原创 2021-08-26 12:09:57 · 9843 阅读 · 6 评论 -
Pytorch中设置哪些随机数种子,才能保证实验可重复
在深度学习训练中,为什么使用同样的代码,就是和别人得到的结果不一样。怎么样才能保证自己每次跑同一个实验得到的结果都是一样的。这就涉及到随机数的设定,代码很短,但是很有用。强烈建议收藏⭐️,或者把这段代码添加进pycharm活动模板即可快速使用~~~~~。1. 就这几句话????import numpy as npimport torchimport randomimport osseed_value = 2020 # 设定随机数种子np.random.seed(seed_valu原创 2021-03-03 17:51:31 · 7761 阅读 · 2 评论 -
Pytorch & MONAI — 手撸各种loss
1. BCEloss1.1 简介全称:Binary CrossEntropyLoss, 二值交叉熵损失。顾名思义,只用于二值的情况,即label为0和1的情况公式:其中,yi表示label, 取值为0 或1。yi^ 表示prediction,取值为[0, 1].公式中没有写求N个样本的平均,因为可以根据自己需求来,是求平均还是求和1.2 pytorch中调用方法torch.nn.BCELoss(weight=None, size_average=None, reduce=None,.原创 2021-01-07 15:39:30 · 3358 阅读 · 9 评论 -
MONAI(4)—一文看懂各种Transform用法(下)
上小结链接:https://mp.csdn.net/editor/html/1137421946 裁剪&填充【SpatialCropd, CenterSpatialCropd, CropForegroundd, RandCropByPosNegLabeld, SpatialPadd】对于CT或者MRI图像来讲,图像是非常大的,又是一个三维图像,不可能全部输入网络中训练。要么把图像直接Resize到固定的尺寸,要么就是裁剪图像。monai提供了非常多的裁剪模式,包括中心裁剪,前景裁剪和随机原创 2021-02-08 15:27:01 · 11028 阅读 · 8 评论 -
MONAI(3)—一文看懂各种Transform用法(上)
在上一次分享中,我们在Dataset方法里,已经使用了transform函数,这节课对transform做一个详细的介绍。上一次视频连接:MONAI中,一定要学会的三种Datasettransform大致可以分为以下几个类别想要什么样类别的变换,就在该类别下去找。普通变换和字典变换的联系与区别普通变换又可以说是基于数组的变换:image和label是以数组形式给到Dataset。字典变换是基于字典的变换(image和label是一个字典对)。 普通变换和字典变换的功能是一样的,只是原创 2021-02-07 21:29:35 · 13412 阅读 · 9 评论 -
MONAI中,一定要学会的三种Dataset使用方法
参数data: 将image 和 label 的地址或值存为字典。label可以是分割的图像,也可以是分类的值(如0, 1, 2...)transform:根据分类或分割任务来定义举例 1 分类任务from monai.data import Dataset data_dict = [{'image': image, 'label': label} for image, label in zip(image_files_list, image_class)]# 创建字典的意思...原创 2021-02-06 21:46:39 · 8960 阅读 · 5 评论 -
MONAI教程<1>-安装
MONAI的安装非常简单,常用的有两种方法:直接 pip install monai从GitHub 上安装monai是通常配合其他库一起使用的,比如pytorch, nibabel, skimage, pillow等等。缺什么直接pip install 就行原创 2021-02-04 22:55:05 · 8039 阅读 · 1 评论 -
一款专门为医学图像定制的框架(MONAI),太好用了!
就是这个框架~~~~~思考一下几个问题 在pytorch中如何加载nii.gz格式的三维数据,dataset应该怎么写? 在pytorch中,如何对医学数据做一些常用transform?比如CT图像中,你只想要-40到160之间的CT值,并把这之间的值归一化到[0,1]. 在刚开始一个项目时,是不是想要快速搭建好一个baseline,并且希望dataset和dataloder可以一句话搞定,不管是二维还是三维,model也可以直接调用,总之,一句话,我不太想写什么代码。 ..原创 2021-02-04 22:43:14 · 11450 阅读 · 0 评论 -
monai.data.CacheDataset vs monai.data.Dataset
monai框架提供了两种加载数据的方式。官方更推荐CacheDataset,将预处理过得数据缓存起来,会更快。先给出两种不同方法加载数据的方式:data_root = '/workspace/data/medical/Task09_Spleen'train_images = sorted(glob.glob(os.path.join(data_root, 'imagesTr', '*.nii.gz')))train_labels = sorted(glob.glob(os.path.join(原创 2020-11-06 17:20:52 · 2296 阅读 · 2 评论 -
monai.data.XXX 常用功能
1.monai.data.NiftiDataset(image_files,seg_files=None,labels=None,as_closest_canonical=False,transform=None,seg_transform=None,image_only=True,dtype=<class 'numpy.float32'>)作用:对Nifti类型的数据创建训练所需要的data loader,分类和分割任务都可以用此函数创建data loader参数:im...原创 2020-07-08 20:16:56 · 723 阅读 · 0 评论 -
monai.tansforms.xxx 常用函数&作用
1.monai.transforms.LoadPNG(image_only=False,dtype=<class 'numpy.float32'>)作用:加载常用的2维图像,格式包括 (PNG, JPG, etc. using PIL)参数:image_only: 布尔值,true or false; if true: 只返回image volume, 否则返回 image data array and metadata实例import monai.tran...原创 2020-07-07 17:19:49 · 2660 阅读 · 3 评论