MONAILabel in 3D Slicer 案例1: 在腹部CT中自动分割脾脏
导读
本系列涵盖从 3D Slicer 医学图像查看器的基础使用到高级自动分割扩展程序的内容(从入门到高阶!),具体包括软件安装、基础使用教程,自动分割扩展(totalsegmentator, monai label)快速标注数据。
在本系列第三部分中,我们在工作站上安装了 MONAILabel 服务端和 MONAILabel 3D Slicer 客户端。
这是在3D Slicer 中使用monai label标注系列的的第四部分内容,我们将从一个简单的案例开始,带你学会使用monai label标注数据。
[ MONAI Label 是一个服务器-客户端系统,它利用 AI 促进交互式医学图像注释。它是一个开源且易于安装的生态系统,可以在具有单个或多个 GPU 的机器上本地运行。服务器和客户端都在同一台/不同的机器上工作。它与MONAI共享相同的原理。
MONAI Label 减少了注释新数据集的时间和精力,并通过不断从用户交互和数据中学习,使 AI 能够适应手头的任务。MONAI Label 允许研究人员和开发人员以用户的方式与他们的应用程序交互,从而不断改进他们的应用程序。最终用户(临床医生、技术人员和一般注释者)受益于 AI 的不断学习,并更好地理解最终用户试图注释的内容。]
下表列出了MONAI Label支持的基本场景、模式、查看器和一般数据类型
从图中第一行可以看到,可对放射学领域‘Radiology’3D 图像进行交互式和自动分割.交互式工具包括 DeepEdit 和 Deepgrow,用于积极改进训练后的模型和部署。并且只针对CT和MRI图像,不包括x线图像。图像格式可以是NIfTI/NRRD/DICOM
MONAI Label初认识
首先,打开终端,激活monailabel环境
conda activate monailabel
激活后,输入monailabel -h
查看基础用法
没有正确运行的话,请检查你的安装是否正确
【添加安装链接】
为了帮助初学者尤其是临床医生理解这个命令的用法。请仔细阅读下面的说明:
基本命令结构
monailabel
:这是