白盒知识蒸馏
在白盒蒸馏中,教师模型的架构和权重是完全可访问的。这种透明度使学生模型不仅可以学习教师模型的输出,还可以学习其内部表示和决策过程。
黑盒知识蒸馏
与白盒蒸馏相反,黑盒蒸馏不需要访问教师模型的内部信息。相反,它专注于复制教师模型的输出行为。学生模型仅从教师生成的输入输出配对中学习,而对其内部操作没有任何了解。例如 LaMini-LM 这项工作创建了一组 258 万条指令,并采用 GPT-3.5 Turbo 来生成对这些指令的响应。随后,它使用这些指令作为基础来微调一系列学生模型。
黑盒蒸馏也被认为是一种很有前途的工具,可以将思维链 (CoT) 的力量从较大的模型转移到较小的模型。