详解白盒和黑盒知识蒸馏

白盒知识蒸馏

在白盒蒸馏中,教师模型的架构和权重是完全可访问的。这种透明度使学生模型不仅可以学习教师模型的输出,还可以学习其内部表示和决策过程。

黑盒知识蒸馏

与白盒蒸馏相反,黑盒蒸馏不需要访问教师模型的内部信息。相反,它专注于复制教师模型的输出行为。学生模型仅从教师生成的输入输出配对中学习,而对其内部操作没有任何了解。例如 LaMini-LM 这项工作创建了一组 258 万条指令,并采用 GPT-3.5 Turbo 来生成对这些指令的响应。随后,它使用这些指令作为基础来微调一系列学生模型。

黑盒蒸馏也被认为是一种很有前途的工具,可以将思维链 (CoT) 的力量从较大的模型转移到较小的模型。

参考

  1. LLM Inference Unveiled: Survey and Roofline Model Insights
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

落难Coder

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值