A Network-based End-to-End Trainable Task-oriented Dialogue System

本文探讨了构建task-oriented对话系统面临的挑战,包括数据稀缺问题。研究对比了强化学习和seq2seq模型的方法,并提出了一种结合两者的策略。论文介绍了一个利用LSTM和CNN的框架,通过整合业务信息和历史对话,降低对训练数据的依赖,减少了模板设计的复杂性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

关键词

end2end, task-oriented dialogue system

来源

arXiv 2016.04.15

问题

当前构建一个诸如宾馆预订或技术支持服务的 task-oriented 的对话系统很难,主要是因为难以获取训练数据。现有两种方式解决问题:

  • 将这个问题看做是 partially observable Markov Decision Process (POMDP),利用强化学习在线与真实用户交互。但是语言理解和语言生成模块仍然需要语料去训练。而且为了让 RL 能运作起来,state 和 action space 必须小心设计,这就限制了模型的表达能力。同时 rewad function 很难设计,运行时也难以衡量
  • 利用 seq2seq 来做,这又需要大量语料训练。同时,这类模型无法做到与数据库交互以及整合其他有用的信息,从而生成实用的相应。

本文提出了平衡两种方法的策略。


文章思路

Model

模型分为五个模块 Intent Network
这个部分可以看做为seq2seq的encoder部分,将用户的输入encode 成一个向量
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值