遥感影像语义分割:数据增强

遥感影像深度学习项目中,因数据资源限制,常使用数据增强扩大数据集。albumentations库提供简便的图像增强,包括像素级(模糊、噪声、色彩变换)和空间级(翻转、旋转、缩放)变换。通过创建增强pipeline,数据增强可在训练前离线完成或在线实时进行。
摘要由CSDN通过智能技术生成

遥感影像语义分割:数据增强

请添加图片描述

深度学习训练的模型需要大量的数据集作为支撑才能有比较好的泛化能力,但是实际项目中由于数据资源和标注难度的限制而难以获得的足够多的数据,这时候我们可以通过数据增强的方法来扩充我们的数据集。下面介绍一个我在做遥感影像深度学习时常用的数据增强库albumentations

一、albumentations介绍

albumentations是一个用来做图像增强的Python开源库,使用起来非常简单方便,主要包括像素上的变换和空间上的变换。
1.1、基本使用方法

import albumentations as A
import cv2

# 创建 pipeline
transform =
  随着遥感技术的发展获取遥感数据的手段越来越丰富。由各种不同的传感器获取的影像数据与日俱增在同一地区形成了多时相、多分辨率的影像序列。如何综合各种类型的遥感影像信息提高遥感数据的利用效益已成为遥感应用的瓶颈问题而遥感影像的纠正与图像调整更是瓶颈中的重点也是未来遥感方面重要研究方向之一。沿海区域的卫星影像是各项工作开展的基础且沿海区域土地覆被信息具有其特殊性地类相对单一的同时在遥感影像解译上也存在一定的差异。本文针对p5影像进行试验通过对图像粗纠正与图像增强等环节的研究真实反映沿海区域自然特征为相关项目影像制作环节中的图像增强工作提供技术借鉴。    相关概念及引申:波谱信息增强在遥感图像中单个像元的亮度值代表的是该像元中的地物的平均辐射值称之为该地物的波谱特征。不同地物之间的亮度值差异以及同一地物在不同波段内的亮度值差异就构成了波谱特征信息简称波谱信息。波谱信息增强是对目标物的光谱特征、像元的对比度、波段间的亮度比进行增强和转换。波谱信息增强的方法主要有反差扩展与调整法、彩色增强法、波段运算法、主成份分析法等四种。1彩色合成增强彩色合成增强法是将多波段黑白图像变换为彩色图像的增强处理技术根据合成影像的彩色与实际景物自然彩色的关系彩色合成分为真彩色合成和假彩色合成两种。真彩色合成是指合成后的彩色图像上的地物色彩与实际地物色彩接近或一致假彩色合成是指合成后的彩色图像上的地物色彩与实际地物色彩不一致。通过彩色合成增强可以从图像背景中突出目标地物便于遥感图像判读。随着多光谱遥感和多元数据融合技术的发展彩色合成作为一项图像彩色增强技术已被高度重
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

GHZhao_GIS_RS

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值