遥感影像语义分割——数据增强(图像和原图同时增强)

该博客介绍了遥感影像语义分割中数据增强的重要性和方法。针对8位和24位图像的转换进行了讲解,并提供了使用PIL库进行旋转、翻转、亮度、对比度、色度和锐度调整的数据增强示例,以避免opencv导致的图像模式问题。此外,还展示了如何应用这些增强技术到实际的遥感影像及其对应的标签图上。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

遥感影像语义分割——数据增强(图像和标签同时增强)

8位图像与24位图像

​ Labelme标注图像生成的标签图为8位彩色图,在Python中用PIL查看图片模式为**‘P’**。在深度学习做训练时, 输入的训练图像需要8位彩色图或者8位灰度图。下面演示24位与这两种模式的转换。

​ 24位彩色图转8位色彩图。在转8位彩色图之后,可能会出现像素值的变化,博主目前也没有找到原因和解决方法。如果有知道解决方法的也欢迎交流。

from PIL import Image

#打开24位图像
img = Image.open('000.png')
#转8位彩色图
new_img = img.convert('P')

​ 24位彩色图转8位灰度图。

from PIL import Image

#打开24位图像
img = Image.open('000.png')
#转8位彩色图
new_img = img.convert('L')

数据增强

​ 如果用opencv来做数据增强会导致输入的8位彩色图变成24位彩色图。这样会导致数据集出现问题无法训练。因此下面介绍使用PIL做数据增强,包括旋转角度、翻转、色度、对比度、亮度的改变。




from PIL import Image, ImageFont, ImageDraw, ImageEnhance
import matplotlib.pyplot as plt
import numpy as np
import random
import  random
import os

def image_rotate(image,label):

    """
    对图像进行一定角度的旋转
    :param image_path:  图像路径
    :param save_path:   保存路径
    :param angle:       旋转角度
    :return:
    """
    image_rotated = image.transpose(Image.ROTATE_90).convert('RGB')
    label_rotated = label.transpose(Image.ROTATE_90)
    return image_rotated,label_rotated
def image_rotate1(image,label):

    """
    对图像进行一定角度的旋转
    :param image_path:  图像路径
    :param save_path:   保存路径
    :param angle:       旋转角度
    :return:
    """
    image_rotated = image.transpose(Image.ROTATE_270).convert('RGB')
    label_rotated = label.transpose(Image.ROTATE_270)
    return image_rotated,label_rotated
def bright(image):
    enh_bri = ImageEnhance.Brightness(image)
    brightness = 1.2
    image_brightened = enh_bri.enhance(brightness)

    return image_brightened.convert('RGB')
def ruidu(image):

    enh_sha = ImageEnhance.Sharpness(image)
    sharpness = 2.3
    image_sharped = enh_sha.enhance(sharpness)

    return image_sharped.convert('RGB')
def sedu(image):
    enh_col = ImageEnhance.Color(image)
    color = 1.2
    image_colored = enh_col.enhance(color)

    return image_colored.convert('RGB')
def duibidu(image):
    enh_con = ImageEnhance.Contrast(image)
    contrast = 1.3
    image_contrasted = enh_con.enhance(contrast)

    return image_contrasted.convert('RGB')
def image_flip(image,label):
    image_transpose = image.transpose(Image.FLIP_LEFT_RIGHT).convert('RGB')
    label_transpose = label.transpose(Image.FLIP_LEFT_RIGHT)
    return image_transpose,label_transpose
def image_color(image,label):
    image_transpose = image.transpose(Image.FLIP_TOP_BOTTOM).convert('RGB')
    label_transpose = label.transpose(Image.FLIP_TOP_BOTTOM)
    return image_transpose,label_transpose


path_img = r'E:\torch-deeplabv3\pytorch-deeplab-xception-master\Waste2021\JPEGImages'
path_label = r'E:\torch-deeplabv3\pytorch-deeplab-xception-master\Waste2021\SegmentationClass'
path_new_img = r'E:\aa\torch-deeplabv3\pytorch-deeplab-xception-master\Waste2021\JPEGImages'
path_new_label = r'E:\aa\torch-deeplabv3\pytorch-deeplab-xception-master\Waste2021\SegmentationClass'
img_list = os.listdir(path_img)
label_list = os.listdir(path_label)

k=0
for i in range(len(img_list)):
    img = Image.open(path_img + '/' + img_list[i])
    label =Image.open(path_label + '/' + img_list[i][0:-4] + '.png')
	#保存原图
    img.convert('RGB').save(path_new_img + '/' + str(("%05d" % (k))) + '.jpg')
    label.save(path_new_label + '/' + str(("%05d" % (k))) + '.png')
    k += 1
	#角度旋转第一次
    img1,mask = image_rotate(img,label)
    img1.save(path_new_img + '/' + str(("%05d" % (k))) + '.jpg')
    mask.save(path_new_label + '/' + str(("%05d" % (k))) + '.png')
    k+=1
	#角度旋转第二次
    img1,mask = image_rotate1(img,label)
    img1.save(path_new_img + '/' + str(("%05d" % (k))) + '.jpg')
    mask.save(path_new_label + '/' + str(("%05d" % (k))) + '.png')
    k+=1
	#调整亮度
    img1 = bright(img)
    img1.save(path_new_img + '/' + str(("%05d" % (k))) + '.jpg')
    label.save(path_new_label + '/' + str(("%05d" % (k))) + '.png')
    k+=1
	#调整对比度
    img1 = duibidu(img)
    img1.save(path_new_img + '/' + str(("%05d" % (k))) + '.jpg')
    label.save(path_new_label + '/' + str(("%05d" % (k))) + '.png')
    k+=1
	#调整锐度
    img1 = ruidu(img)
    img1.save(path_new_img + '/' + str(("%05d" % (k))) + '.jpg')
    label.save(path_new_label + '/' + str(("%05d" % (k))) + '.png')
    k+=1
	#调整色度
    img1 = sedu(img)
    img1.save(path_new_img + '/' + str(("%05d" % (k))) + '.jpg')
    label.save(path_new_label + '/' + str(("%05d" % (k))) + '.png')
    k+=1
	#左右翻转
    img1,mask = image_flip(img,label)
    img1.save(path_new_img + '/' + str(("%05d" % (k))) + '.jpg')
    mask.save(path_new_label + '/' + str(("%05d" % (k))) + '.png')
    k+=1
	#上下翻转
    img1,mask = image_color(img,label)
    img1.save(path_new_img + '/' + str(("%05d" % (k))) + '.jpg')
    mask.save(path_new_label + '/' + str(("%05d" % (k))) + '.png')
    k += 1



    print(img_list[i] + 'is finished')

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值