marchine learning 之交叉验证

评价指标
这里写图片描述

public class PerformanceMeasure {
   
    /**
     * 1、 FN:False Negative,被判定为负样本,但事实上是正样本。
     * 2、 FP:False Positive,被判定为正样本,但事实上是负样本。
     * 3、TN:True Negative,被判定为负样本,事实上也是负样本。
     * 4、TP:True Positive,被判定为正样本,事实上也是正样本。
     * 5、precesion:查准率
     * 即在检索后返回的结果中,真正正确的个数占整个结果的比例。
     * precesion = TP/(TP+FP) 。
     * 6、 recall:查全率
     * 即在检索结果中真正正确的个数 占整个数据集(检索到的和未检索到的)中真正正确个数的比例。
     * recall = TP/(TP+FN)即,检索结果中,你判断为正的样本也确实为正的,
     * 以及那些没在检索结果中被你判断为负但是事实上是正的(FN)。
     * 7、F-Measure
     * 是Precision和Recall加权调和平均
     * P和R指标有时候会出现的矛盾的情况,这样就需要综合考虑他们,最常见的方法就是F-Measure(又称为F-Score)。
     * MCC马修斯相关系数
     * 衡量非平衡数据集的指标
     * MCC = (TP*TN - FP*FN)/((TP+FP)*(Tp+FN)*(TN+FP)*(TN+FN))^0.5
     */
    public double tp;
    public double fp;
    public double tn;
    public double fn;

    /**
     * 计算马修斯相关系数
     *
     * @return
     */
    public double getCorrelationCoefficient() {
        return (tp * fn - fp * fn) / Math.sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn));
    }

    public PerformanceMeasure(double tp, double tn, double fp, double fn) {
        this.tp = tp;
        this.tn = tn;
        
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值