macOS、Windows、Linux、Docker等各个平台通过ollama一键部署谷歌最新开源的gemma大模型,免费开源离线部署使用超越llama2、chatgpt4

macOS、Windows、Linux、Docker等各个平台通过ollama一键部署谷歌最新开源的gemma大模型,免费开源离线部署使用超越chatgpt4。谷歌最强开源大模型亮相!Gemini技术下放,笔记本就能跑,可商用。

在这里插入图片描述

谷歌12天连放三个大招

9日-宣布其最强大模型Gemini Ultra免费用,于2023年12月发布时在MMLU(大规模多任务语言理解)测评上超过人类专家,在32个多模态基准中取得30个SOTA(当前最优效果),几乎全方位超越GPT-4,向OpenAI发起强势一击。

16日-放出大模型“核弹”Gemini 1.5,并将上下文窗口长度扩展到100万个tokens。Gemini 1.5 Pro可一次处理1小时的视频、11小时的音频、超过3万行代码或超过70万字的代码库,向OpenAI还没发布的GPT-5发起挑战。

21日-突然放出开源模型Gemma,谷歌在被“抢头条”后,一举将采用与Gemini相同研究和技术的Gemma开源,一是狙击Llama 2等开源模型,二是为生成式AI的应用开发者带来福音。
谷歌这动作之密集、行动之迅速,似乎在向抢了自己风头的OpenAI宣战。
在这里插入图片描述
一夜之间,Gemma系列正式上线,全面对外开放。

它采用Gemini同款技术架构,主打开源和轻量级,免费可用、模型权重开源、允许商用,同时笔记本可跑。

共有2B和7B两个版本,性能全面超越开源标杆Llama 2。
在这里插入图片描述
每种规模都有预训练和指令微调版本,可在Kaggle、Colab Notebook、Google Cloud中访问。

而且支持JAX、PyTorch和TensorFlow通过原生Keras 3.0进行推理和监督式微调(SFT),适应多种开发需求和环境。得益于对JAX的支持,它还能进行快速推理。

目前模型也同步上线Hugging Chat,可在线体验试玩。

发布几个小时里,Gemma火速成为圈内最热话题,成为议论焦点。

多性能超越同规模开源模型
具体来看Gemma的技术报告。

在18个任务中,Gemma在11个任务上表现优于同规模优质开源模型。
在这里插入图片描述
Gemma包含两种规格。

7B版本参数量约78亿,面向GPU和TPU上的高效部署和开发,2B版本参数量约25亿,用于CPU和端侧应用程序。

它基于Transformer解码器架构,关键模型参数如下。

在这里插入图片描述
在这里插入图片描述
相比于基础Transformer,Gemma进行了一些升级。

7B版本使用多头注意力机制,2B版本使用多查询注意力机制。

在每一层中使用旋转位置嵌入代替绝对位置嵌入;使用GeGLU激活函数替代标准ReLU非线性。

同时对每一个子层的输入和输出都进行归一化。

Gemma 2B/7B分别使用了2T和6T token进行训练,主要来自网络文档、数学和代码,不过这些数据不是多模态的。

为了兼容,谷歌使用了Gemini的SentencePiece tokenizer子集,它可以分割数字,不删除额外的空格,并对未知token进行字节级编码。

大神卡帕西关注了Tokenizer部分,他表示,Gemma的tokenizer和Llama 2的不同,但和GPT一致。

François Chollet认为Gemma最大的特点是谷歌拥有SOTA级测试集过滤机制,这意味着基准数据能相当准确地反映了模型在实际环境中的表现。

谷歌也报告了Gemma在MMLU等基准上的表现。

最后,谷歌还强调了Gemma的安全隐私性能。

实验数据显示Gemma不会存储敏感数据,但可能会记住一些潜在隐私数据。不过报告表示这个数据可能因为工具原因有所误报。


gemma:https://ollama.com/library/gemma
Gemma is a family of lightweight, state-of-the-art open models built by Google DeepMind.

Note: this model requires Ollama 0.1.26 or later. Download it here.
https://ollama.com/download

Gemma is a new open model developed by Google and its DeepMind team. It’s inspired by Gemini models at Google.

Gemma is available in both 2b and 7b parameter sizes:

ollama run gemma:2b
ollama run gemma:7b (default)
The models undergo training on a diverse dataset of web documents to expose them to a wide range of linguistic styles, topics, and vocabularies. This includes code to learn syntax and patterns of programming languages, as well as mathematical text to grasp logical reasoning.

To ensure the safety of the model, the team employed various data cleaning and filtering techniques, including rigorous filtering for CSAM (child sexual abuse material), sensitive data filtering, and filtering based on content quality in compliance with Google’s policies.

Reference
Google Gemma:https://ai.google.dev/gemma/docs/model_card

在这里插入图片描述

latest
5.2GB • 430ed3535049 • 12 hours ago
ollama run gemma

2b
1.7GB • ff0200cc2d50 • 11 hours ago
ollama run gemma:2b

text
5.2GB • af57093b878e • 9 hours ago
ollama run gemma:text

instruct
5.2GB • 430ed3535049 • 12 hours ago
ollama run gemma:instruct

7b
5.2GB • 430ed3535049 • 12 hours ago
ollama run gemma:7b

2b-instruct
1.7GB • ff0200cc2d50 • 11 hours ago
ollama run gemma:2b-instruct

2b-text
1.7GB • 8e7dbe189b8c • 11 hours ago
ollama run gemma:2b-text

7b-instruct
5.2GB • 430ed3535049 • 12 hours ago
ollama run gemma:7b-instruct

7b-text
5.2GB • af57093b878e • 9 hours ago
ollama run gemma:7b-text

2b-instruct-q4_0
1.7GB • ff0200cc2d50 • 11 hours ago
ollama run gemma:2b-instruct-q4_0

2b-instruct-q4_1
1.8GB • 0531ce560c52 • 11 hours ago
ollama run gemma:2b-instruct-q4_1

2b-instruct-q5_0
1.9GB • bd0c49d488a7 • 11 hours ago
ollama run gemma:2b-instruct-q5_0

2b-instruct-q5_1
2.1GB • 8494d3a93bb0 • 11 hours ago
ollama run gemma:2b-instruct-q5_1

2b-instruct-q8_0
2.7GB • a1bea2062b57 • 11 hours ago
ollama run gemma:2b-instruct-q8_0

2b-instruct-q2_K
1.3GB • 4bd3d747b45a • 11 hours ago
ollama run gemma:2b-instruct-q2_K

2b-instruct-q3_K_S
1.4GB • e5ea800f0842 • 11 hours ago
ollama run gemma:2b-instruct-q3_K_S

2b-instruct-q3_K_M
1.5GB • 16b226fa6db2 • 11 hours ago
ollama run gemma:2b-instruct-q3_K_M

2b-instruct-q3_K_L
1.6GB • e79e55e83410 • 11 hours ago
ollama run gemma:2b-instruct-q3_K_L

2b-instruct-q4_K_S
1.7GB • 3cbacca7aba1 • 11 hours ago
ollama run gemma:2b-instruct-q4_K_S

2b-instruct-q4_K_M
1.8GB • 64a29cbcb55c • 11 hours ago
ollama run gemma:2b-instruct-q4_K_M

2b-instruct-q5_K_S
1.9GB • 08c46e51eec0 • 11 hours ago
ollama run gemma:2b-instruct-q5_K_S

2b-instruct-q5_K_M
2.0GB • 08e646708d53 • 11 hours ago
ollama run gemma:2b-instruct-q5_K_M

2b-instruct-q6_K
2.2GB • be48f404caec • 11 hours ago
ollama run gemma:2b-instruct-q6_K

2b-instruct-fp16
4.5GB • 4a53019167fe • 11 hours ago
ollama run gemma:2b-instruct-fp16

2b-text-q4_0
1.7GB • 8e7dbe189b8c • 11 hours ago
ollama run gemma:2b-text-q4_0

2b-text-q4_1
1.8GB • 0f5defc9d92c • 11 hours ago
ollama run gemma:2b-text-q4_1

2b-text-q5_0
1.9GB • ea2612176b5f • 11 hours ago
ollama run gemma:2b-text-q5_0

2b-text-q5_1
2.1GB • 8991086c344d • 11 hours ago
ollama run gemma:2b-text-q5_1

2b-text-q8_0
2.7GB • 5bffeae39c52 • 11 hours ago
ollama run gemma:2b-text-q8_0

2b-text-q2_K
1.3GB • 706d4ab3e4b9 • 11 hours ago
ollama run gemma:2b-text-q2_K

2b-text-q3_K_S
1.4GB • e20ed30a3bd0 • 11 hours ago
ollama run gemma:2b-text-q3_K_S

2b-text-q3_K_M
1.5GB • 2f3d7ff15ab1 • 11 hours ago
ollama run gemma:2b-text-q3_K_M

2b-text-q3_K_L
1.6GB • a6719f63fd68 • 11 hours ago
ollama run gemma:2b-text-q3_K_L

2b-text-q4_K_S
1.7GB • 979eec9c5947 • 11 hours ago
ollama run gemma:2b-text-q4_K_S

2b-text-q4_K_M
1.8GB • 42453f05d9d7 • 10 hours ago
ollama run gemma:2b-text-q4_K_M

2b-text-q5_K_S
1.9GB • 504bda6a88b7 • 10 hours ago
ollama run gemma:2b-text-q5_K_S

2b-text-q5_K_M
2.0GB • 5e528905a274 • 10 hours ago
ollama run gemma:2b-text-q5_K_M

2b-text-q6_K
2.2GB • 3c8c53aac289 • 10 hours ago
ollama run gemma:2b-text-q6_K

2b-text-fp16
4.5GB • 6ce2a676d014 • 11 hours ago
ollama run gemma:2b-text-fp16

7b-instruct-q4_0
5.2GB • 430ed3535049 • 12 hours ago
ollama run gemma:7b-instruct-q4_0

7b-instruct-q4_1
5.7GB • e1e4a2e0c8ee • 12 hours ago
ollama run gemma:7b-instruct-q4_1

7b-instruct-q5_0
6.2GB • de923fde2f26 • 12 hours ago
ollama run gemma:7b-instruct-q5_0

7b-instruct-q5_1
6.7GB • 2e51588baf45 • 12 hours ago
ollama run gemma:7b-instruct-q5_1

7b-instruct-q8_0
9.1GB • 61d0f0df3637 • 12 hours ago
ollama run gemma:7b-instruct-q8_0

7b-instruct-q2_K
3.7GB • 831e95226882 • 11 hours ago
ollama run gemma:7b-instruct-q2_K

7b-instruct-q3_K_S
4.2GB • e4aea70c287e • 11 hours ago
ollama run gemma:7b-instruct-q3_K_S

7b-instruct-q3_K_M
4.6GB • 92dd270cb673 • 11 hours ago
ollama run gemma:7b-instruct-q3_K_M

7b-instruct-q3_K_L
4.9GB • 1fa1f8e1a003 • 11 hours ago
ollama run gemma:7b-instruct-q3_K_L

7b-instruct-q4_K_S
5.2GB • bb7b8325814d • 11 hours ago
ollama run gemma:7b-instruct-q4_K_S

7b-instruct-q4_K_M
5.5GB • d9c26a968eb4 • 11 hours ago
ollama run gemma:7b-instruct-q4_K_M

7b-instruct-q5_K_S
6.2GB • 42630cbe71a2 • 11 hours ago
ollama run gemma:7b-instruct-q5_K_S

7b-instruct-q5_K_M
6.3GB • 556abeb39bfd • 11 hours ago
ollama run gemma:7b-instruct-q5_K_M

7b-instruct-q6_K
7.2GB • 5c7aded0b8bd • 11 hours ago
ollama run gemma:7b-instruct-q6_K

7b-instruct-fp16
17GB • f689ad351c8d • 11 hours ago
ollama run gemma:7b-instruct-fp16

7b-text-q4_0
5.2GB • af57093b878e • 9 hours ago
ollama run gemma:7b-text-q4_0

7b-text-q4_1
5.7GB • a7adb7322d8b • 9 hours ago
ollama run gemma:7b-text-q4_1

7b-text-q5_0
6.2GB • fd6dc849a9f8 • 9 hours ago
ollama run gemma:7b-text-q5_0

7b-text-q5_1
6.7GB • 938308342124 • 9 hours ago
ollama run gemma:7b-text-q5_1

7b-text-q8_0
9.1GB • 1b7b1e5e2f98 • 9 hours ago
ollama run gemma:7b-text-q8_0

7b-text-q2_K
3.7GB • e43e18a484ed • 9 hours ago
ollama run gemma:7b-text-q2_K

7b-text-q3_K_S
4.2GB • f40e21d459ff • 9 hours ago
ollama run gemma:7b-text-q3_K_S

7b-text-q3_K_M
4.6GB • ffd8ea66cf1f • 9 hours ago
ollama run gemma:7b-text-q3_K_M

7b-text-q3_K_L
4.9GB • 1676d1f86165 • 9 hours ago
ollama run gemma:7b-text-q3_K_L

7b-text-q4_K_S
5.2GB • 51854f1241b3 • 8 hours ago
ollama run gemma:7b-text-q4_K_S

7b-text-q4_K_M
5.5GB • 5ec372e05241 • 8 hours ago
ollama run gemma:7b-text-q4_K_M

7b-text-q5_K_S
6.2GB • df449b30e2e1 • 8 hours ago
ollama run gemma:7b-text-q5_K_S

7b-text-q5_K_M
6.3GB • dc8f812e49c7 • 8 hours ago
ollama run gemma:7b-text-q5_K_M

7b-text-q6_K
7.2GB • 9e7cfd3fab5b • 8 hours ago
ollama run gemma:7b-text-q6_K

7b-text-fp16
16GB • 1f1e9df10872 • 9 hours ago
ollama run gemma:7b-text-fp16


https://ollama.com/library/gemma/tags

Ollama

https://discord.gg/ollama

Get up and running with large language models locally.

macOS

Download

Windows preview

Download

Linux

curl -fsSL https://ollama.com/install.sh | sh

Manual install instructions

Docker

The official Ollama Docker image ollama/ollama is available on Docker Hub.

Libraries

Quickstart

To run and chat with Llama 2:

ollama run llama2

Model library

Ollama supports a list of models available on ollama.com/library

Here are some example models that can be downloaded:

ModelParametersSizeDownload
Llama 27B3.8GBollama run llama2
Mistral7B4.1GBollama run mistral
Dolphin Phi2.7B1.6GBollama run dolphin-phi
Phi-22.7B1.7GBollama run phi
Neural Chat7B4.1GBollama run neural-chat
Starling7B4.1GBollama run starling-lm
Code Llama7B3.8GBollama run codellama
Llama 2 Uncensored7B3.8GBollama run llama2-uncensored
Llama 2 13B13B7.3GBollama run llama2:13b
Llama 2 70B70B39GBollama run llama2:70b
Orca Mini3B1.9GBollama run orca-mini
Vicuna7B3.8GBollama run vicuna
LLaVA7B4.5GBollama run llava
Gemma2B1.4GBollama run gemma:2b
Gemma7B4.8GBollama run gemma:7b

Note: You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.

Customize a model

Import from GGUF

Ollama supports importing GGUF models in the Modelfile:

  1. Create a file named Modelfile, with a FROM instruction with the local filepath to the model you want to import.

    FROM ./vicuna-33b.Q4_0.gguf
    
  2. Create the model in Ollama

    ollama create example -f Modelfile
    
  3. Run the model

    ollama run example
    

Import from PyTorch or Safetensors

See the guide on importing models for more information.

Customize a prompt

Models from the Ollama library can be customized with a prompt. For example, to customize the llama2 model:

ollama pull llama2

Create a Modelfile:

FROM llama2

# set the temperature to 1 [higher is more creative, lower is more coherent]
PARAMETER temperature 1

# set the system message
SYSTEM """
You are Mario from Super Mario Bros. Answer as Mario, the assistant, only.
"""

Next, create and run the model:

ollama create mario -f ./Modelfile
ollama run mario
>>> hi
Hello! It's your friend Mario.

For more examples, see the examples directory. For more information on working with a Modelfile, see the Modelfile documentation.

CLI Reference

Create a model

ollama create is used to create a model from a Modelfile.

ollama create mymodel -f ./Modelfile

Pull a model

ollama pull llama2

This command can also be used to update a local model. Only the diff will be pulled.

Remove a model

ollama rm llama2

Copy a model

ollama cp llama2 my-llama2

Multiline input

For multiline input, you can wrap text with """:

>>> """Hello,
... world!
... """
I'm a basic program that prints the famous "Hello, world!" message to the console.

Multimodal models

>>> What's in this image? /Users/jmorgan/Desktop/smile.png
The image features a yellow smiley face, which is likely the central focus of the picture.

Pass in prompt as arguments

$ ollama run llama2 "Summarize this file: $(cat README.md)"
 Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications.

List models on your computer

ollama list

Start Ollama

ollama serve is used when you want to start ollama without running the desktop application.

Building

Install cmake and go:

brew install cmake go

Then generate dependencies:

go generate ./...

Then build the binary:

go build .

More detailed instructions can be found in the developer guide

Running local builds

Next, start the server:

./ollama serve

Finally, in a separate shell, run a model:

./ollama run llama2

REST API

Ollama has a REST API for running and managing models.

Generate a response

curl http://localhost:11434/api/generate -d '{
  "model": "llama2",
  "prompt":"Why is the sky blue?"
}'

Chat with a model

curl http://localhost:11434/api/chat -d '{
  "model": "mistral",
  "messages": [
    { "role": "user", "content": "why is the sky blue?" }
  ]
}'

See the API documentation for all endpoints.

Community Integrations

Web & Desktop

Terminal

Database

Package managers

Libraries

Mobile

Extensions & Plugins


参考资料:
https://github.com/ollama/ollama

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

代码讲故事

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值