AUC在分类任务中的计算法方法

摘要:

在机器学习的分类任务中,我们常用许多的指标,诸如召回率(Recall)、准确率(Precision)、F1值、AUC等。
那么,如果手动计算AUC应该要怎么计算呢?相信大家很多时候都是用写好的库直接计算,可能对AUC计算不太了解,下面这篇文章就简单的概述一下AUC的计算方法。
(注:本文的重点其实不在于阐述什么是AUC。因为网上关于这方面的文章实在太多了。但是对于AUC的计算的文章相对来说少一些)

1.什么是AUC?

相信这个问题很多玩家都已经明白了,简单的概括一下,AUC(are under curve)是一个模型的评价指标,用于分类任务。
那么这个指标代表什么呢?这个指标想表达的含义,简单来说其实就是随机抽出一对样本(一个正样本,一个负样本),然后用训练得到的分类器来对这两个样本进行预测,预测得到正样本的概率大于负样本概率的概率。
A U C = P ( P 正 样 本 > P 负 样 本 ) AUC = P (P_{正样本} > P_{负样本}) AUC=P(P>P)
具体关于AUC含义的分析推荐以下回答:

AUC如何理解?

2.如何计算AUC?

计算AUC时,推荐2个方法。

方法一:

在有M个正样本,N个负样本的数据集里。一共有MN对样本(一对样本即,一个正样本与一个负样本)。统计这MN对样本里,正样本的预测概率大于负样本的预测概率的个数。
∑ I ( P 正 样 本 , P 负 样 本 ) M ∗ N \frac {\sum I(P_{正样本},P_{负样本})}{M*N} MNI(PP),其中,
I ( P 正 样 本 , P 负 样 本 ) = { 1 , P 正 样 本 > P 负 样 本 0.5 , P 正 样 本 = P 负 样 本 0 , P 正 样 本 < P 负 样 本 I(P_{正样本}, P_{负样本}) = \left \{ \begin{aligned} 1, P_{正样本} > P_{负样本} \\ 0.5, P_{正样本} = P_{负样本} \\ 0, P_{正样本} < P_{负样本} \end{aligned} \right. I(PP)=1,P>P0.5,P=P0,P<P

这样说可能有点抽象,我举一个例子便能够明白。

IDlabelpro
A00.1
B00.4
C10.35
D10.8

假设有4条样本。2个正样本,2个负样本,那么M*N=4。即总共有4个样本对。分别是:
(D,B),(D,A),(C,B),(C,A)。
在(D,B)样本对中,正样本D预测的概率大于负样本B预测的概率(也就是D的得分比B高),记为1
同理,对于(C,B)。正样本C预测的概率小于负样本C预测的概率,记为0.
最后可以算得,总共有3个符合正样本得分高于负样本得分,故最后的AUC为 1 + 1 + 1 + 0 4 = 0.75 \frac {1+1+1+0}{4} = 0.75 41+1+1+0=0.75

在这个案例里,没有出现得分一致的情况,假如出现得分一致的时候,例如:

IDlabelpro
A00.1
B00.4
C10.4
D10.8

同样本是4个样本对,对于样本对(C,B)其I值为0.5。
最后的AUC为 1 + 1 + 1 + 0.5 4 = 0.875 \frac {1+1+1+0.5}{4} = 0.875 41+1+1+0.5=0.875

方法二:

另外一个方法就是利用下面的公式:
A U C = ∑ i n s i ∈ p o s i t i v e c l a s s r a n k i n s i − M × ( M + 1 ) 2 M × N AUC = \frac {\sum_{ins_i \in positiveclass}rank_{ins_i} - \frac {M \times (M+1)}{2}}{M \times N} AUC=M×Ninsipositiveclassrankinsi2M×(M+1)
这个公式看起来有点吓人,首先解释一下每一个符号的意思:
公式的含义见:公式解释

r a n k i n s i rank_{ins_i} rankinsi,代表第i条样本的序号。(概率得分从小到大排,排在第rank个位置)
M , N M,N M,N分别是正样本的个数和负样本的个数
∑ i n s i ∈ p o s i t i v e c l a s s \sum_{ins_i \in positiveclass} insipositiveclass只把正样本的序号加起来。

同样本地,我们用上面的例子。

IDlabelpro
A00.1
B00.4
C10.35
D10.8

将这个例子排序。按概率排序后得到:

IDlabelprorank
A00.11
C10.352
B00.43
D10.84

按照上面的公式,只把正样本的序号加起来也就是只把样本C,D的rank值加起来后减去一个常数项 M ( M + 1 ) 2 \frac{M(M+1)}{2} 2M(M+1)即: ( 4 + 2 ) − 2 ∗ ( 2 + 1 ) 2 2 ∗ 2 = 6 − 3 4 = 0.75 \frac{(4+2) - \frac{2*(2+1)}{2}}{2*2} = \frac{6-3}{4} = 0.75 22(4+2)22(2+1)=463=0.75,这个答案和我们上面所计算的是一样的。

这个时候,我们有个问题,假如出现得分一致的情况怎么办?下面举一个例子说明:

IDlabelpro
A10.8
B10.7
C00.5
D00.5
E10.5
F10.5
G00.3

在这个例子中,我们有4个取值概率为0.5,而且既有正样本也有负样本的情况。计算的时候,其实原则就是相等得分的rank取平均值。具体来说如下:
先排序:

IDlabelprorank
G00.31
F10.52
E10.53
D00.54
C00.55
B10.76
A10.87

这里需要注意的是:相等概率得分的样本,无论正负,谁在前,谁在后无所谓。

由于只考虑正样本的rank值:
对于正样本A,其rank值为7
对于正样本B,其rank值为6
对于正样本E,其rank值为(5+4+3+2)/4
对于正样本F,其rank值为(5+4+3+2)/4

最后我们得到:

在这里插入图片描述

3.最后的最后,如何用程序验证?

为了方便,我们使用sk-learn里面自带的库来简单的验证一下我们的例子。

在这里插入图片描述

其python的代码

import numpy as np
from sklearn.metrics import roc_auc_score
y_true = np.array([1,1,0,0,1,1,0])
y_scores = np.array([0.8,0.7,0.5,0.5,0.5,0.5,0.3])
print "y_true is ",y_true
print "y_scores is ",y_scores
print "AUC is",roc_auc_score(y_true, y_scores)
 
 
y_true = np.array([0, 0, 1, 1])
y_scores = np.array([0.1, 0.4, 0.35, 0.8])
print "y_true is ",y_true
print "y_scores is ",y_scores
print "AUC is ",roc_auc_score(y_true, y_scores)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值