【DiffusionModel系列】Sora揭底系列模型介绍 (VAE/DDPM/SD/DiT/Sora)

本文详细介绍了几种在图像合成和处理中发挥关键作用的深度学习模型,包括VAE、DDPM、StableDiffusion、DiT和Sora,以及分类器引导和无分类器引导技术,展示了深度学习在艺术创作和数据增强等领域的潜力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

飞书PPT链接

简介

该文档介绍了几种深度学习模型,特别是那些在图像合成和处理方面有显著应用的模型。文档内容涉及变分自编码器(VAE)、去噪扩散概率模型(DDPM)、稳定扩散(Stable Diffusion)、扩散变换器(DiT),以及Sora模型的介绍。

  • 变分自编码器(VAE):VAE通过最大化数据的边缘似然来训练模型,采用变分下界(ELBO)和KL散度来近似似然函数,从而学习数据的隐含结构。它利用重参数化技巧来使梯度反向传播可行。

  • 去噪扩散概率模型(DDPM):DDPM通过将噪声逐渐加入到数据中并学习如何逆转这一过程来生成数据。模型通过优化负对数似然的变分下界来训练,利用重参数化技巧和Langevin动力学来有效地进行采样。

  • 稳定扩散(Stable Diffusion)扩散变换器(DiT):这些是基于DDPM的变体,通过引入改进的结构和优化策略来提高效率和生成质量。DiT特别是通过增加不同大小的“patchify”操作来提高模型的可扩展性。

  • Sora:虽然文档中对Sora的具体介绍较少,但它似乎是基于前述技术的进一步发展或变体。

文档还涉及了**分类器引导(Classifier guidance)无分类器引导(Classifier-free guidance)**技术,这些技术用于改善条件生成模型的性能,通过引导生成过程来提高生成图像的质量和相关性。

整体而言,该文档提供了对几种重要的深度学习模型的系统性介绍,特别强调了它们在图像处理和生成领域的应用。通过这些模型的研究和发展,深度学习在艺术创作、图像合成和数据增强等领域展现出了巨大的潜力。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值