YOLOv2如何fine-tuning?

本文介绍了如何使用YOLOv2进行fine-tuning以适应自定义数据集。首先,详细讲解了数据准备过程,包括建立层次结构和XML转TXT。接着,对.cfg配置文件进行修改,降低学习率、调整最大批次和类别数。同时,更新了names文件和data文件以匹配新的数据集。最后,提供了训练启动步骤和可能遇到的问题。
摘要由CSDN通过智能技术生成

作者:木凌
时间:2016年11月。
博客连接:http://blog.csdn.net/u014540717
QQ交流群:554590241


在上一篇用YOLOv2模型训练VOC数据集中,我们尝试用YOLOv2来训练voc数据集,但我想训练自己的数据集,那么YOLOv2如何做fine-tuning呢?我们一步一步来做~

1 准备数据

1.1 建立层次结构

首先在darknet/data文件夹下创建一个文件夹fddb2016,文件层次如下

--fddb2016
    --Annotations
        2002_07_19_big_img_130.xml
        2002_07_25_big_img_84.xml
        2002_08_01_big_img_1445.xml
        2002_08_08_big_img_277.xml
        2002_08_16_big_img_637.xml
        2002_08_25_big_img_199.xml
        2003_01_01_big_img_698.xml
        .
        .
        .
    --ImageSets
        --Main
            test.txt
            trainval.txt
    --JPEGImages
        2002_07_19_big_img_130.jpg
        2002_07_25_big_img_84.jpg
        2002_08_01_big_img_1445.jpg
        2002_08_08_big_img_277.jpg
        2002_08_16_big_img_637.jpg
        2002_08_25_big_img_199.jpg
        2003_01_01_big_img_698.jpg
        .
        .
        .
    --labels

trainval.txt中存放的是图片的名称,我们来看一下

2002_08_11_big_img_591
2002_08_26_big_img_265
2002_07_19_big_img_423
2002_08_24_big_img_490
2002_08_31_big_img_17676
2002_07_31_big_img_228
.
.
.

1.2 xml2txt

因为yolo读取的是txt文档,所以我们要将xml的benchmark修改为txt格式,程序如下所示:

import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import join
import cv2

#sets=[('fddb2016', 'train'), ('fddb2016', 'val')]
#classes = ["aeroplane", "bicycle", "bird", "boat", "bottle", "bus", <
评论 29
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值