AI视野·今日CS.NLP 自然语言处理论文速览
Thu, 8 Jul 2021
Totally 25 papers
👉上期速览✈更多精彩请移步主页
Daily Computation and Language Papers
DORA: Toward Policy Optimization for Task-oriented Dialogue System with Efficient Context Authors Hyunmin Jeon, Gary Geunbae Lee 最近,通过使用潜在的行动来解决监督学习SL的缺点,加固学习RL已经应用于面向任务的对话系统。在本文中,我们提出了一个多域任务面向对话系统,称为对话系统,使用使用SL的有效上下文DORA优化重复行动策略,随后应用RL使用反复对话策略优化对话系统。此对话框策略与两个单词级别和高级策略一起循环生成显式系统操作。因此,通过使用考虑高效上下文而不是整个对话历史记录,通过使用显式系统操作策略在SL和RL步骤中清晰地优化DORA。系统操作既可解释和可控,则潜在的行为不是。 DORA在MultiWoz 2.0上提高了6.6点的成功率和10.9点。 |
Linear-time calculation of the expected sum of edge lengths in random projective linearizations of trees Authors Llu s Alemany Puig, Ramon Ferrer i Cancho 句子的句法结构通常使用句法依赖树来表示。在过去几十年中,句法相关词语之间的距离的总和一直在较轻的。依赖距离的研究导致了依赖距离最小化原则的制定,从而排序句子中的单词以最小化该总和。已经定义了许多随机基线来进行关于语言的相关定量研究。最简单的随机基线是句子中单词无约束随机排列中的总和的预期值,即允许句子的单词的所有播种并同样可能。在这里,我们专注于句子的单词的流行基线随机投射排列,即句法依赖结构是投影的,是一个正式的约束,句子通常以语言满足。到目前为止,大致用句子的随机投影次衰减中的依赖性距离之和估计了Zn的成本的顺序的蒙特卡罗过程的期望,其中n是句子的单词数量和z是句子的数量样本数量较大的Z,估计的误差越低,但时间成本越大。在这里,我们呈现公式来计算该期望而没有误差的误差。此外,我们展示了星树最大化,并设计动态编程算法来检索最小化它的树木。 |
Lemmatization of Historical Old Literary Finnish Texts in Modern Orthography Authors Mika H m l inen, Niko Partanen, Khalid Alnajjar 曾在老文学中写的文本代表了从16世纪开始在芬兰语中写的第一个文学作品。芬兰有几个项目,有数字化旧出版物,并为他们提供研究使用。但是,在这些数据中使用现代NLP方法构成了巨大的挑战。在本文中,我们提出了一种同时规范化和释放旧文学芬兰语的方法。我们最好的型号达到了Agricola和87.7在域名中的其他当代的文本中的文本中的96.3准确性。我们的方法是在Zenodo和Github上自由提供的。 |
Robustifying Multi-hop QA through Pseudo-Evidentiality Training Authors Kyungjae Lee, Seung won Hwang, Sang eun Han, Dohyeon Lee 本文研究了多跳问题回答模型的偏置问题,无需正确推理就正确回答。强化这些模型的一种方法是监督不仅是答案,而且还具有正确的推理链。现有方向是向推销链接到培训模型,需要昂贵的额外注释。相比之下,我们提出了一种新的方法来学习证据,决定是否通过这种注释来支持答案预测是否得到了正确的证据。相反,我们比较答案信心的反事实变更,没有证据句子,以产生伪证明的注释。我们验证了我们在HotpotQA中设置的原始集合和挑战上的提出模型,表明我们的方法在多跳推理中是准确和稳健的。 |
Time-Aware Ancient Chinese Text Translation and Inference Authors Ernie Chang, Yow Ting Shiue, Hui Syuan Yeh, Vera Demberg 在本文中,我们的目标是解决古代中文文本翻译的挑战1,由于差异的差异,质量差的翻译导致的语言间隙,2个大部分翻译缺少往往非常重要的语境信息了解文本。为此,我们通过提出以下方式,通过提出以下方式来提高过去的翻译技术,我们将任务作为多标签预测任务,其中模型预测翻译和其特定的时代。我们观察到,这有助于桥接语言间隙,因为时间上下文也被用作辅助信息。作为一种泛化的自然步骤&# |