现代控制理论笔记

现代控制理论

状态方程的获取

PI调节器
在这里插入图片描述

二阶系统

开环系统
G ( s ) = ω n 2 s 2 + 2 ξ ω n s G(s) = {\omega_n^2\over s^2+2\xi\omega_ns} G(s)=s2+2ξωnsωn2
Φ ( s ) = ω n 2 s 2 + 2 ξ ω n s + ω n 2 = 1 ( s ω n ) 2 + 2 ξ ω n s + 1 \Phi(s) = {\omega_n^2\over s^2 + 2\xi\omega_n s+\omega_n^2} = {{1\over ({s\over \omega_n} )^2+2{\xi\over\omega_n}s+1 }} Φ(s)=s2+2ξωns+ωn2ωn2=(ωns)2+2ωnξs+11
其中, ξ \xi ξ是阻尼比, ω n \omega_n ωn是阻尼系数。
特征方程为
s 2 + 2 ξ ω n s + ω n 2 = 0 s^2+2\xi\omega_ns+\omega_n^2=0 s2+2ξωns+ωn2=0
特征方程的根为
s 1 , 2 = − ξ ω n ± ω n ξ 2 − 1 s_{1,2} = -\xi\omega_n \pm \omega_n\sqrt{\xi^2-1} s1,2=ξωn±ωnξ21
无阻尼: ω n = 0 \omega_n=0 ωn=0
欠阻尼状态: 0 < ξ < 1 0<\xi<1 0<ξ<1
example:
G ( s ) = 1 s 2 + s + 1 G(s) = {1\over s^2+s+1} G(s)=s2+s+11
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
状态方程:
{ x 1 ˙ = x 2 x 2 ˙ = − 6 x 1 − x 2 + u y = 6 x 1 \begin{cases}\dot{x_1} = x_2\\ \dot{x_2} =-6x_1 -x_2 +u\end{cases} \\ y=6x_1 {x1˙=x2x2˙=6x1x2+uy=6x1
A = [ 0 1 − 6 − 1 ] , B = [ 0 1 ] , C = [ 6 0 ] , D = [ 0 ] A = \left[\begin{matrix}0&1\\-6&-1\end{matrix}\right], B = \left[\begin{matrix}0\\1\end{matrix}\right],C=\left[\begin{matrix}6 & 0 \end{matrix}\right] ,D=[0] A=[0611],B=[01],C=[60],D=[0]
MATLAB验证

close all;clear;clc
A = [0 1; -6 -1];
B = [0;1];
C = [6 0];
D = [0];
sys = ss(A,B,C,D);
sys_tran = tf(sys);
sys_tran

sys_tran =
 
       6
  -----------
  s^2 + s + 6
 
Continuous-time transfer function.

说明构建的状态方程是正确的。

系统能控性

Q v = [ B A B A B 2 ⋯ A B n − 1 ] Q_v = \left[\begin{matrix}B&AB&AB^2&\cdots&AB^{n-1}\end{matrix}\right] Qv=[BABAB2ABn1]
对于上述二阶系统
Q v = [ 0 1 1 − 1 ] Q_v = \left[\begin{matrix}0&1\\1&-1\end{matrix}\right] Qv=[0111]
r a n k Q v = 2 rank{Q_v}=2 rankQv=2 所以,原系统是完全能控的。

系统能观型

Q o = [ C C A C 2 A ⋮ C n − 1 A ] Q_o = \left[\begin{matrix}C\\CA\\C^2A\\\vdots \\C^{n-1}A\end{matrix}\right] Qo=CCAC2ACn1A
上述二阶系统的能观测矩阵
Q o = [ 6 0 0 6 ] Q_o = \left[\begin{matrix}6&0\\0&6\end{matrix}\right] Qo=[6006]
r a n k Q o = 2 rank{Q_o} = 2 rankQo=2,所以原系统时完全能观测的。

李雅普诺夫稳定性

显然,原点为系统的平衡状态,选二次型标量函数为可能的李氏函数,即
{ x 1 ˙ = x 2 x 2 ˙ = − 6 x 1 − x 2 + u \begin{cases}\dot{x_1} = x_2\\ \dot{x_2} =-6x_1 -x_2 +u\end{cases} {x1˙=x2x2˙=6x1x2+u
v ( x ) = x 1 2 + x 2 2 v(x) = x_1^2+x_2^2 v(x)=x12+x22

v ˙ ( x ) = 2 x 1 x 2 ˙ + 2 x 1 ˙ x 2 = 2 x 1 ( − 6 x 1 − x 2 + u ) + 2 x 2 x 2 = − 12 x 1 2 − 2 x 1 x 2 + 2 x 2 2 + 2 x 1 u \dot{v}(x) = 2x_1\dot{x_2}+2\dot{x_1}x_2=2x_1(-6x_1 -x_2 +u)+2x_2x_2=-12x_1^2-2x_1x_2+2x_2^2+2x_1u v˙(x)=2x1x2˙+2x1˙x2=2x1(6x1x2+u)+2x2x2=12x122x1x2+2x22+2x1u
出现的这个 u u u,怎么处理?
应该是对状态变量 x x x求偏导,所以就不会有u出现

[ 0 1 − 6 − 1 ] \left[\begin{matrix}0&1\\-6&-1 \end{matrix}\right] [0611]
[ x 1 x 2 ] [ 0 1 − 6 − 1 ] [ x 1 x 2 ] = x 2 ∗ ( x 1 − x 2 ) − 6 ∗ x 1 ∗ x 2 = − 5 x 1 x 2 − 2 x 2 2 = \left[\begin{matrix}x_1&x_2 \end{matrix}\right] \left[\begin{matrix}0&1\\-6&-1 \end{matrix}\right] \left[\begin{matrix}x_1\\x_2\end{matrix}\right] =x2*(x1 - x2) - 6*x1*x2=-5x_1x_2-2x_2^2 = [x1x2][0611][x1x2]=x2(x1x2)6x1x2=5x1x22x22=
[ 0 5 / 2 5 / 2 − 2 ] \left[\begin{matrix}0&5/2\\5/2&-2\end{matrix}\right] [05/25/22]

李雅普诺夫第二法
A T P + P A = − Q A^TP+PA=-Q ATP+PA=Q
选取 Q = − I Q= -I Q=I
P = [ p 11 p 12 p 21 p 22 ] P = \left[\begin{matrix}p_{11}&p_{12}\\p_{21}&p_{22}\end{matrix}\right] P=[p11p21p12p22]
A = [ 0 1 − 6 − 1 ] A = \left[\begin{matrix}0&1\\-6&-1\end{matrix}\right] A=[0611]

A = [0 1; -6 -1];
syms p11 p12 p21 p22
P = [p11, p12; p21, p22];
eqn = A'*P + P*A == -eye(2,2)
solve(eqn)
  p11: 43/12
  p12: 1/12
  p21: 1/12
  p22: 7/12

P = [ 43 12 1 12 1 12 7 12 ] P = \left[\begin{matrix}{43\over12}&{1\over12}\\{1\over12}&{7\over12}\end{matrix}\right] P=[1243121121127]

利用塞尔维特判据检验 P P P的正定性

P = [43/12 1/12;1/12 7/12];
det(P)
ans =

    2.0833

Δ 1 = p 11 = 43 12 > 0 Δ 2 = ∣ 43 12 1 12 1 12 7 12 ∣ = 2.0833 > 0 \Delta_1=p_{11}={43\over 12}>0\\ \Delta_2 = \left|\begin{matrix}{43\over12}&{1\over12}\\{1\over12}&{7\over12}\end{matrix}\right|=2.0833>0 Δ1=p11=1243>0Δ2=1243121121127=2.0833>0
可见 P > 0 P>0 P>0,正定的,系统在原点的平状态是渐进稳定的。
系统的李氏函数及其导函数分贝为
v ( x ) = x T P x = 1 12 ( 43 x 1 2 + 2 x 1 x 2 + 7 x 2 2 ) > 0 v ˙ ( x ) = x T ( − I ) x = − ( x 1 2 + x 2 2 ) < 0 v(x) = x^TPx = {1\over 12}(43x_1^2+2x_1x_2+7x_2^2)>0\\ \dot{v}(x) = x^T(-I)x=-(x_1^2+x_2^2)<0 v(x)=xTPx=121(43x12+2x1x2+7x22)>0v˙(x)=xT(I)x=(x12+x22)<0
ξ = 0.707 , ω n = 11.313 \xi = 0.707 , \omega_n = 11.313 ξ=0.707,ωn=11.313

设计一个观测器使得极点为 s 1 , 2 = − 8 ± 8 j s_{1,2}=-8\pm8j s1,2=8±8j.
修改封装好的模块参数,得到如下图的曲线。
在这里插入图片描述

在这里插入图片描述
是不是配置之后也是这个样子的曲线那?

  1. 系统是完全能观测的,所以可以构造任意极点配置的全维观测器。
  2. 观测器的期望的特征多项式为
    f o ∗ ( s ) = ∏ i = 1 n s − s i = ( s + 8 + 8 j ) ( s + 8 − 8 j ) = s 2 + 16 s + 128 f_o^*(s) = \prod\limits_{i=1}^n{s-s_i} = (s+8+8j)(s+8-8j)=s^2 + 16s+128 fo(s)=i=1nssi=(s+8+8j)(s+88j)=s2+16s+128
  3. 计算 f o ∗ ( A ) f_o^*(A) fo(A)
    f o ∗ ( A ) = A 2 + 16 A + 128 I = [ 122 19 − 114 103 ] f_o^*(A)=A^2 + 16A+128I=\left[\begin{matrix}122&19\\-114&103\end{matrix}\right] fo(A)=A2+16A+128I=[12211419103]
  4. 求观测器的反馈阵, L = [ l 1 l 2 ] L=\left[\begin{matrix}l_1\\l_2\end{matrix}\right] L=[l1l2]
    L = f o ∗ ( A ) Q o − 1 [ 0 1 ] = [ 114 618 ] L=f_o^*(A)Q_o^{-1}\left[\begin{matrix}0\\1\end{matrix}\right] = \left[\begin{matrix}114\\ 618\end{matrix}\right] L=fo(A)Qo1[01]=[114618]
    全维观测器的表达式为
    x ^ = ( A − L C ) x ^ + B u + L y \hat{x}=(A-LC)\hat{x}+Bu+Ly x^=(ALC)x^+Bu+Ly
    A − L C = [ − 684 1 − 3714 − 1 ] A-LC = \left[\begin{matrix}-684&1\\ -3714&-1\end{matrix}\right] ALC=[684371411]
  5. 状态反馈矩阵K
    系统是完全能控的
    K = [ k 1 k 2 ] K = \left[\begin{matrix}k_1&k_2\end{matrix}\right] K=[k1k2]
    带观测期的闭环控制系统
    x ^ = A x − B K x ^ + B r x ˙ ^ = L C x + ( A − L C − B K ) x ^ + B r y = C x \begin{matrix} \hat{x} =& Ax-BK\hat{x}+Br\\ \hat{\dot{x}} =& LCx+(A-LC-BK)\hat{x}+Br\\ y=&Cx \end{matrix} x^=x˙^=y=AxBKx^+BrLCx+(ALCBK)x^+BrCx
    闭环特征多项式
    f ( s ) = ∣ s I − ( A − B K ) ∣ = ∣ ∣ = s 2 + ( 1 + k 2 ) s + 6 + k 1 f(s) = \left|\begin{matrix}sI-(A-BK)\end{matrix}\right| = \left|\begin{matrix}\end{matrix}\right|= s^2 + (1 + k_2)s+ 6+k_1 f(s)=sI(ABK)==s2+(1+k2)s+6+k1
    f o ∗ ( s ) = ∏ i = 1 n s − s i = ( s + 8 + 8 j ) ( s + 8 − 8 j ) = s 2 + 16 s + 128 f_o^*(s) = \prod\limits_{i=1}^n{s-s_i} = (s+8+8j)(s+8-8j)=s^2 + 16s+128 fo(s)=i=1nssi=(s+8+8j)(s+88j)=s2+16s+128
    k 1 = 122 , k 2 = 15 k_1=122,k_2=15 k1=122,k2=15
    K = [ 122 15 ] K=\left[\begin{matrix}122 & 15\end{matrix}\right] K=[12215]

零极点配置

G ( s ) = 1 s ( s − 2 ) = 1 s 2 − 2 s G(s) = {1\over s(s-2)}={1\over s^2-2s} G(s)=s(s2)1=s22s1
设计状态反馈增益向量 K K K,使得闭环极点为 { s 1 = − 1 , s 2 = 1 } \{s_1 = -1,s_2=1\} {s1=1,s2=1}
传递函数的系数可以标记为
b 1 = 0 , b 2 = 1 ; a 1 = − 2 , a 2 = 0 b_1 = 0,b_2 = 1; a_1 = -2,a_2 = 0 b1=0,b2=1;a1=2,a2=0
系统的状态方程可以描述为能控规范型
[ x 1 ˙ x 2 ˙ ] = [ 0 1 − a 2 − a 1 ] [ x 1 x 2 ] + [ 0 1 ] u \left[\begin{matrix}\dot{x_1} \\ \dot{x_2} \end{matrix}\right]= \left[\begin{matrix}0&1 \\ -a_2&-a_1\end{matrix}\right] \left[\begin{matrix}x_1 \\ x_2\end{matrix}\right]+ \left[\begin{matrix}0 \\ 1\end{matrix}\right] u [x1˙x2˙]=[0a21a1][x1x2]+[01]u
y = [ b 2 b 1 ] [ x 2 x 1 ] = [ 1 0 ] [ x 2 x 1 ] y =\left[\begin{matrix}b_2&b_1\end{matrix}\right]\left[\begin{matrix}x_2\\x_1\end{matrix}\right] = \left[\begin{matrix}1&0\end{matrix}\right] \left[\begin{matrix}x_2 \\ x_1\end{matrix}\right] y=[b2b1][x2x1]=[10][x2x1]
原系统的特征多项式可以描述为
α ( s ) = ∣ s I − A ∣ = ∣ s − 1 0 s − 2 ∣ = s 2 − 2 s = s 2 + a 1 s + a 2 \alpha(s) =\left|\begin{matrix}sI-A\end{matrix}\right|=\left|\begin{matrix}s&-1\\0&s-2\end{matrix}\right|=s^2-2s =s^2+a_1s+a_2 α(s)=sIA=s01s2=s22s=s2+a1s+a2
期望的系统的特征多项式
α ∗ = ( s − s 1 ) ( s − s 2 ) = s 2 + 2 s + 1 = s 2 + a 1 ∗ s + a 2 ∗ \alpha^* = (s-s_1)(s-s_2) = s^2+2s+1 = s^2+a_1^*s+a_2^* α=(ss1)(ss2)=s2+2s+1=s2+a1s+a2
a 1 ∗ = 2 , a 2 ∗ = 1 a_1^*= 2,a_2^*=1 a1=2,a2=1

对于用完全能控型描述的系统,其系统的反馈向量可以直接描述为
K = [ k 1 k 2 ] = [ a 2 ∗ − a 2 a 1 ∗ − a 1 ] = [ 1 4 ] K= \left[\begin{matrix}k_1 & k_2\end{matrix}\right] = \left[\begin{matrix}a^*_2-a_2 & a^*_1-a_1\end{matrix}\right]=\left[\begin{matrix}1 & 4\end{matrix}\right] K=[k1k2]=[a2a2a1a1]=[14]
利用simulink仿真
原系统的方框图
在这里插入图片描述
增加反馈增益后的方框图
x ˙ = A x + B u \dot{x} = Ax+Bu x˙=Ax+Bu
u ( t ) = − K x ( t ) + r ( t ) u(t) = -Kx(t)+r(t) u(t)=Kx(t)+r(t)
x ˙ = ( A − B K ) x + B r \dot{x} = (A-BK)x+Br x˙=(ABK)x+Br
在这里插入图片描述

事实上,上面的这个方框图可以简化为下图
在这里插入图片描述

输出为
在这里插入图片描述
极点在{-1,-1}处的系统的传递函数可以直接表示为
G ( s ) = 1 s 2 + 2 s + 1 G(s) = {1\over s^2 + 2s+1} G(s)=s2+2s+11
在这里插入图片描述
其输出为
在这里插入图片描述
构造观测器
L = [ l 1 l 2 ] L =\left[\begin{matrix}l_1\\l_2\end{matrix}\right] L=[l1l2]
A − L C = [ 0 1 0 2 ] − [ l 1 l 2 ] [ 1 0 ] = [ − l 1 1 − l 2 2 ] A-LC=\left[\begin{matrix}0&1\\0&2\end{matrix}\right]-\left[\begin{matrix}l_1\\l_2\end{matrix}\right] \left[\begin{matrix}1&0\end{matrix}\right] =\left[\begin{matrix}-l_1&1\\-l_2&2\end{matrix}\right] ALC=[0012][l1l2][10]=[l1l212]
det ⁡ [ s I − ( A − L C ) ] = [ s + l 1 − 1 − l 2 s − 2 ] = s 2 + ( l 1 − 2 ) s + l 2 − 2 l 1 \det[sI-(A-LC)] = \left[\begin{matrix}s+l_1&-1\\-l_2&s-2\end{matrix}\right] = s^2+(l_1-2)s+l_2-2l_1 det[sI(ALC)]=[s+l1l21s2]=s2+(l12)s+l22l1

{ l 1 − 2 = 2 l 2 − 2 l 1 = 1 → { l 1 = 4 l 2 = 5 \begin{cases}l_1-2=2\\ l_2-2l_1 = 1\end{cases} \rightarrow \begin{cases}l_1 = 4\\l_2 = 5\end{cases} {l12=2l22l1=1{l1=4l2=5
带有观测器的闭环控制系统

在这里插入图片描述
输出如下图
在这里插入图片描述
下图是 y ^ − y \hat{y}-y y^y的曲线
在这里插入图片描述
原系统是一个完全可观测的系统,这点需要在构建全维观测器前说明。
绘制这个图的目的是看一下真是的输出值,与估计值之间的差别。
L阵将这个差值引入到观测器中,在这个例子当中,差值一直为零,相当于不起作用,反馈增益相当于直接加在了原系统上。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值