今日CS.CV 计算机视觉论文速览
Mon, 20 May 2019
Totally 25 papers
?上期速览✈更多精彩请移步主页
Interesting:
?边窗滤波Side Window Filtering,SWF, 中心的滤波框是造成边缘模糊的基本原因,研究人员提出了将框的边缘或者角点而不是中心用于待处理的像素位置。这种简单但有效的方法具有广泛的拓展性,并用于多种早期视觉任务中去。(from 深圳大学)
目标像素不会处于边缘的中心,而是一边。所以将目标像素作为潜在边缘处理,并将某个窗的边缘或者角点与目标像素对齐,输出则是一系列边窗的叠加。
边窗滤波器的构造,分为了旋转,左右,上下和四角,可以看到待处理的像素都位于某个小边框的角点或者边缘上。
?AM-LFS用于损失函数搜索的自动机器学习, 损失函数的设计对于模型训练至关重要,这篇文章提出了一种用于损失函数搜索的自动机器学习方法,将强化学习用于了损失函数搜索。关键的贡献在于对于搜索空间的设计可以保证在不同版本任务上的泛化性和迁移性。同时提出了高效的优化方法在训练过程中高效的优化损失函数的参数分布。(from 商汤)
内部最小化样本损失,外部最大化网络的奖励:
?OHL-Auto-Aug在线超参数学习用于自动增强策略, 一种经济的方法来学习数据增强策略,基于参数化的概率分布,使得参数可以与网络共同优化,消除了充分训练和全局搜索的繁杂。(from 商汤 香港中文)
在训练过程中,数据增强分布逐渐收敛:
?Texture Fields在函数空间中学习纹理表示, 点云的纹理映射问题,研究人员提出了纹理场的概念,在连续的3D函数参数化网络上实现新颖的纹理表示。绕开了形状离散和参数化,用独立于形状的纹理表示方法来进行映射。(from 图宾根大学 & MPI)
纹理场的表示能力:
隐空间插值和纹理迁移:
ref:https://github.com/syb7573330/im2avatar
?EENA神经网络的高效进化, 自动神经架构搜索近年来取得了很大的成就但在搜索时的无方向性造成了计算量庞大。为了解决这一问题,这篇文章提出了名为EENA的进化方法,基于变异和交叉操作,将已经学习到的信息作为引导来为后续学习提供方向。在CIFAR-10上仅仅利用0.65GPU日就实现了8.47M参数的2.56%测试误差的架构,并可以方便地迁移到CIFAR-100。(from 中科院大学)
一些变异操作:
模型搜索过程中的树结构:
?单图像深度估计的理解, 研究了网络如何从rgb中学习到深度的过程,以MonoDepth为例探索了网络用于深度估计的视觉信息,发现了网络会忽略清晰尺寸而比较倾向利用垂直位置,但同时也需要已知相机位姿,在滚转和俯仰的情况下深度估计将变得不准。从垂直图像位置来估计深度但需要较强的边缘特征。 (from 代尔夫特理工)
?激光雷达传感器建模和数据增强, 利用图像迁移的方法从非配对数据中利用CycleGan建立传感器模型,并利用仿真环境sim2real得到逼真的激光雷达数据。还利用real2real从低分辨率数据得到了高分辨的激光雷达数据,激光雷达数据在鸟瞰视角(• Bird-eye View ,2D BEV)和2D极视角下(• Polar-Grid Map, 2D PGM)进行表示。(from 法雷奥Valeo)
真实数据与合成数据: