UVA 10859 Placing Lampposts(树DP)

该博客介绍了UVA 10859题目的解决方案,这是一个关于在无向无环图中放置灯柱的动态规划问题。目标是在最少的节点上放置灯柱,确保所有边都被照亮,并且优化恰好被一盏灯照亮的边数。博主提出了使用树形DP的方法,并通过设置优化目标函数x=Ma+c来求解,其中M是一个大数,a是灯柱数量,c是恰好被一盏灯照亮的边数。博主详细阐述了状态转移方程和决策过程。
摘要由CSDN通过智能技术生成


题意:给一个n个顶点m条边的无向无环图,在尽量少的结点上放灯,使得所有边都被照亮。每盏灯将照亮以它为一个端点的所有边。在灯的总数最小的前提下,被两盏灯同时照亮的变数应该尽量大。


思路:无向无环图就是“森林”,常用树形dp,本题要优化的目标有两个,放置的灯数a应尽量少,被两盏灯同时照亮的边数b应尽量大,为了统一,我们把b替换成”恰好被一盏灯照亮的边数c尽量小“。然后设x=Ma+c为最终的优化目标,M是一个很大的正整数。当x取最小值的时候,x/M就是a的最小值,x%M就是c最小值。



当有两个量v1,v2需要优化时,要求首先满足v1最小,在这个前提下v2最小的问题,可以考虑优化x=M*v1+v2,其中M是比"比v2的最大理论值和v2的最小理论值之差"还要大的数。


定义dp(i,j),其中i表示节点i,j表示节点i的父节点是否放置了街灯,0代表没放,1代表放了,则dp(i,j)代表在上述下x的最小值。


实际上,对于每个节点而言,只有两种决策:在i处放或者不放街灯。

决策一:节点i处不放街灯,那么i是根或者父亲节点放了街灯。所以dp(i,j)=sum{ dp(v,0) | v取遍i的所有儿子节点 },如果i不是根节点,那么结果+1,因为i和父亲连接的这条边只被一盏灯照亮。

决策二:节点i处放街灯,dp(i,j)=sum{ dp(v,1)| v取遍i的所有儿子节点  } + M,如果i不是根节点而且j=0,那么结果+1。


#include<cstdio>  
#include<cstring>  
#include<cmath>  
#include<cstdlib>  
#include<iostream>  
#include<algorithm>  
#include<vector>  
#include<map>  
#include<queue>  
#include<stack> 
#include<string>
#include<map> 
#include<set>
#define eps 1e-6 
#define LL long long  
using namespace std;  

const int maxn = 1000 + 5;
const int M = 2000;
vector<int> G[maxn];
int d[maxn][2];
int m, n;

int dp(int i, int fa, int j) {
	if(d[i][j] != -1) return d[i][j];
	int& ans = d[i][j];
	ans = M;
	for(int k = 0; k < G[i].size(); k++) {
		if(G[i][k] != fa) ans += dp(G[i][k], i, 1); 
	}
	if(fa > -1 && !j) ans++;
	int sumv = 0;
	if(fa == -1 || j == 1) {
		if(fa != -1) sumv = 1;
		for(int k = 0; k < G[i].size(); k++) {
			if(G[i][k] != fa) sumv += dp(G[i][k], i, 0); 
		}
		ans = min(ans, sumv);
	}
	return ans;
}

int main() {
	//freopen("input.txt", "r", stdin);
	int t; cin >> t;
	while(t--) {
		cin >> n >> m;
		memset(d, -1, sizeof(d));
		for(int i = 0; i < n; i++) G[i].clear();
		for(int i = 0; i < m; i++) {
			int u, v;
			cin >> u >> v;
			G[u].push_back(v);
			G[v].push_back(u);
		}
		int ans = 0;
		for(int i = 0; i < n; i++)
			if(d[i][1] == -1) ans += dp(i, -1, 0);
		int a = ans/M, c = ans%M, b = m-c;
		printf("%d %d %d\n", a, b, c);
	}
	return 0;
}







评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值