题意:给一个n个顶点m条边的无向无环图,在尽量少的结点上放灯,使得所有边都被照亮。每盏灯将照亮以它为一个端点的所有边。在灯的总数最小的前提下,被两盏灯同时照亮的变数应该尽量大。
思路:无向无环图就是“森林”,常用树形dp,本题要优化的目标有两个,放置的灯数a应尽量少,被两盏灯同时照亮的边数b应尽量大,为了统一,我们把b替换成”恰好被一盏灯照亮的边数c尽量小“。然后设x=Ma+c为最终的优化目标,M是一个很大的正整数。当x取最小值的时候,x/M就是a的最小值,x%M就是c最小值。
当有两个量v1,v2需要优化时,要求首先满足v1最小,在这个前提下v2最小的问题,可以考虑优化x=M*v1+v2,其中M是比"比v2的最大理论值和v2的最小理论值之差"还要大的数。
定义dp(i,j),其中i表示节点i,j表示节点i的父节点是否放置了街灯,0代表没放,1代表放了,则dp(i,j)代表在上述下x的最小值。
实际上,对于每个节点而言,只有两种决策:在i处放或者不放街灯。
决策一:节点i处不放街灯,那么i是根或者父亲节点放了街灯。所以dp(i,j)=sum{ dp(v,0) | v取遍i的所有儿子节点 },如果i不是根节点,那么结果+1,因为i和父亲连接的这条边只被一盏灯照亮。
决策二:节点i处放街灯,dp(i,j)=sum{ dp(v,1)| v取遍i的所有儿子节点 } + M,如果i不是根节点而且j=0,那么结果+1。
#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#include<vector>
#include<map>
#include<queue>
#include<stack>
#include<string>
#include<map>
#include<set>
#define eps 1e-6
#define LL long long
using namespace std;
const int maxn = 1000 + 5;
const int M = 2000;
vector<int> G[maxn];
int d[maxn][2];
int m, n;
int dp(int i, int fa, int j) {
if(d[i][j] != -1) return d[i][j];
int& ans = d[i][j];
ans = M;
for(int k = 0; k < G[i].size(); k++) {
if(G[i][k] != fa) ans += dp(G[i][k], i, 1);
}
if(fa > -1 && !j) ans++;
int sumv = 0;
if(fa == -1 || j == 1) {
if(fa != -1) sumv = 1;
for(int k = 0; k < G[i].size(); k++) {
if(G[i][k] != fa) sumv += dp(G[i][k], i, 0);
}
ans = min(ans, sumv);
}
return ans;
}
int main() {
//freopen("input.txt", "r", stdin);
int t; cin >> t;
while(t--) {
cin >> n >> m;
memset(d, -1, sizeof(d));
for(int i = 0; i < n; i++) G[i].clear();
for(int i = 0; i < m; i++) {
int u, v;
cin >> u >> v;
G[u].push_back(v);
G[v].push_back(u);
}
int ans = 0;
for(int i = 0; i < n; i++)
if(d[i][1] == -1) ans += dp(i, -1, 0);
int a = ans/M, c = ans%M, b = m-c;
printf("%d %d %d\n", a, b, c);
}
return 0;
}