提升方法概述
一个弱分类器的误差率只比随机猜测好一些,提升的目的就是连续对反复修改的数据应用弱分类算法,由此产生一个弱分类器序列 Gm(x) , m=1,2,3...M ,然后通过一个加权的多数表决来合并全部预测,以产生最终预测
G(x)=sign(∑Mm=1αmGm(x))
这里, αm 由提升方法来计算,它们的作用是对序列中较精确的分类器给予较高的影响。
在每个提升步,数据修改就是对每一训练观测 (xi,yi) 实施加权 wi ,开始,所有权都置成 wi=1/N ,以便第一步能够简单地用通常的方式在数据上训练分类。对每一个相继的迭代 m=2,3...M ,观测的权值被分别修改,并且分类算法被再次应用于加权观测。在第 m 步,那些被前一步导出的分类器
AdaBoost算法
算法流程如下:
1.初始化观测权值 wi=1/N,i=1,2...N
2.对于 m=1 到 M :
(a)使用权值
(b)计算 Gm(x) 在训练数据集上的分类误差率
em=P(Gm(xi)!=yi)=∑Ni=1wmiI(Gm(xi)!=yi)
(c)计算 Gm(x) 的系数
αm=12∗log1−