提升和加法树及AdaBoost算法总结

本文详细介绍了提升方法的概念,特别是AdaBoost算法的工作原理,包括初始化权重、迭代过程、误差率计算、权重更新和最终分类器的构建。此外,还讨论了指数损失函数在AdaBoost中的角色,以及提升树在分类和回归问题中的应用。最后,文章提到了最速下降法和梯度提升作为数值优化策略在构建加法模型中的使用。
摘要由CSDN通过智能技术生成

提升方法概述

一个弱分类器的误差率只比随机猜测好一些,提升的目的就是连续对反复修改的数据应用弱分类算法,由此产生一个弱分类器序列 Gm(x) , m=1,2,3...M ,然后通过一个加权的多数表决来合并全部预测,以产生最终预测
G(x)=sign(Mm=1αmGm(x))
这里, αm 由提升方法来计算,它们的作用是对序列中较精确的分类器给予较高的影响。
在每个提升步,数据修改就是对每一训练观测 (xi,yi) 实施加权 wi ,开始,所有权都置成 wi=1/N ,以便第一步能够简单地用通常的方式在数据上训练分类。对每一个相继的迭代 m=2,3...M ,观测的权值被分别修改,并且分类算法被再次应用于加权观测。在第 m 步,那些被前一步导出的分类器 Gm1(x) 误分类的观测权值提高,而被正确分类的观测权值降低。这样,随着迭代的进行,那些很难正确分类的观测受到了不断增长的影响。因此,每个后继分类器被强制关注被前面的分类器误分类的训练观测。

AdaBoost算法

算法流程如下:
1.初始化观测权值 wi=1/N,i=1,2...N
2.对于 m=1 M
(a)使用权值 wi ,用分类器 Gmx 拟合数据
(b)计算 Gmx 在训练数据集上的分类误差率
em=P(Gm(xi)!=yi)=Ni=1wmiI(Gm(xi)!=yi)
(c)计算 Gmx 的系数
αm=12log1

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值