/*
RMQ区间最值
ST DP
by sbn
*/
#include<iostream>
#include<cmath>
#include<cstdio>
using namespace std;
int n,m;
long long a[1000001],dp[1000001][100];
int main(){
//freopen("rmq.in","r",stdin);
scanf("%d%d",&n,&m);
for (int i=1;i<=n;i++) scanf("%d",&a[i]);
for (int i=1;i<=n;i++) dp[i][0]=a[i];
for (int j=1;j< int(log(n)/log(2))+1;j++)
for (int i=1;i<=n;i++)
dp[i][j]=max(dp[i][j-1],dp[i+(1<<(j-1))][j-1]);
for (int i=1;i<=m;i++)
{
int st,ed;
scanf("%d%d",&st,&ed);
int d=int(log(ed-st+1)/log(2));
printf("%d\n",max(dp[st][d],dp[ed-(1<<d)+1][d]));
}
}
RMQ区间最值(STdp)
最新推荐文章于 2024-10-06 22:57:34 发布
本文介绍了一种解决RMQ区间最值问题的有效算法,并通过具体实现代码详细展示了该算法的工作原理。该算法利用预处理的方式,通过动态规划构建一个二维数组来存储中间结果,从而在O(1)的时间复杂度内查询区间最大值。
摘要由CSDN通过智能技术生成