RMQ区间最值(STdp)

本文介绍了一种解决RMQ区间最值问题的有效算法,并通过具体实现代码详细展示了该算法的工作原理。该算法利用预处理的方式,通过动态规划构建一个二维数组来存储中间结果,从而在O(1)的时间复杂度内查询区间最大值。
摘要由CSDN通过智能技术生成
/*
    RMQ区间最值
    ST DP
    by sbn
*/
#include<iostream>
#include<cmath>
#include<cstdio>
using namespace std;
int n,m;
long long a[1000001],dp[1000001][100];
int main(){
    //freopen("rmq.in","r",stdin);
        scanf("%d%d",&n,&m);

        for (int i=1;i<=n;i++)  scanf("%d",&a[i]);
        for (int i=1;i<=n;i++)  dp[i][0]=a[i];
            for (int j=1;j< int(log(n)/log(2))+1;j++)
        for (int i=1;i<=n;i++)
                dp[i][j]=max(dp[i][j-1],dp[i+(1<<(j-1))][j-1]);
        for (int i=1;i<=m;i++)
        {
        int st,ed;      
        scanf("%d%d",&st,&ed);
        int d=int(log(ed-st+1)/log(2));
        printf("%d\n",max(dp[st][d],dp[ed-(1<<d)+1][d]));
        }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值