STDP简述

文章介绍了脉冲神经网络(PNN)中不同于传统梯度下降的学习机制——STDP(SpikeTimingDependentPlasticity)。STDP通过比较突触前后的脉冲时间差来调整权重,当前脉冲先于后脉冲时导致权重增强(LTP),反之则导致权重减弱(LTD)。这种更新方式基于时间依赖的突触塑性,形成了权重变化的数学模型,用于计算SNN的权重更新。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        区别于传统的梯度下降方法,脉冲神经网络通常使用的是更具生物学特性的STDP(spike timing dependent plasticity)学习策略来更新网络的连接权重。

          的更新在脉冲神经网络中最常用的方法是STDP方法,STDP更新突触权重的方式是:若突触前脉冲比突触后脉冲到达时间早,会导致Long-Term Potentiation(LTP)效应,即 权重会增加。反之,若突触前脉冲比突触后脉冲到达时间晚,会引起LTD,即 权重会减小。

        最基础的STDP为:

        其中, t_{i}^{n}是突触后脉冲发放的时间, t_{j}^{f} 是突触前脉冲发放的时间,W(x)为:

        又:

        最终得出:

 这样就建立了权重变化与前后脉冲的关系,从而SNN权重更新可依靠上式计算得出。

 参考文献路径:Spike-timing dependent plasticity - Scholarpedia

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

2ephyr

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值