Spike Timing Dependent Plasticity(STDP)

Spike Timing Dependent Plasticity(STDP)

1、典型原理:

在这里插入图片描述

​ 权重的更新依赖于突触前脉冲到达时间和突触后脉冲发射相对时序。根据上图所示,假设突触j的突触前脉冲到达时间为 t j f t_{j}^{f} tjf,f是自然数,计数突触前神经元的脉冲, t i n t_i^{n} tin代表突触后神经元的脉冲。

Δ ω 1 = ∑ i = 1 N ∑ i = 1 n W ( t i n − t j f ) \Delta \omega _ {1} = \sum _ {i=1}^ {N} \sum _ {i=1}^ {n} W( t_ {i}^ {n} - t_ {j}^ {f} ) Δω1=i=1Ni=1nW(tintjf)

​ W为STDP函数,用于确定突触前脉冲和突触后脉冲的相对时序所对应权重的变化相对率。

W ( x ) = A + exp ⁡ ( − x / τ + ) f o r   x > 0 W(x)=A_{+}\exp\left(-x/\tau_{+}\right)\quad{for~}x\gt 0 W(x)=A+exp(x/τ+)for x>0

W ( x ) = − A − exp ⁡ ( x / τ − )        f o r    x < 0 { W}( x)=-A_{-}\exp\left({ x}/\tau_{-}\right)\;\;\;for\;x\lt 0 W(x)=Aexp(x/τ)forx<0

2、Online-STDP(Variant):

在这里插入图片描述

​ 通过使用突触轨迹来降低计算复杂度,以此可以采用在线更新的规则进行突触权重更新的实现。

​ 每个突触前脉冲的到达都会留下轨迹 x j ( t ) x_j(t) xj(t),这条轨迹在脉冲到达时为 a + ( x j ) a_+(x_j) a+(xj),在没有脉冲时按指数衰减。同理,每个突触后脉冲到达也会留下轨迹 y ( t ) y(t) y(t),这条轨迹在脉冲到达时为 a ( y ) a_(y) a(y)轨迹可能的解释是正在反向传播的动作电位引起的突触的电压,或者是反向传播的动作电位引起的钙进入。

τ + d x j d t = − x + a + ( x ) ∑ j δ ( t − t j f ) \tau_{+}\frac{dx_{j}}{dt}=-x+a_{+}(x)\sum_{j}\delta\left(t-t_{j}^{f}\right) τ+dtdxj=x+a+(x)jδ(ttjf)

τ − d y d t = − y + a + ( y ) ∑ n δ ( t − t n ) \tau_{-}\frac{dy}{dt}=-y+a_{+}(y)\sum_{n}\delta\left(t-t^{n}\right) τdtdy=y+a+(y)nδ(ttn)

权重的变化:

d w j d t = A + ( w j ) x ( t ) ∑ n δ ^ ( t − t n ) − A − ( w j ) y ( t ) ∑ f δ ^ ( t − t j f ) {\frac{dw_{j}}{dt}}=A_{+}\left(w_{j}\right)x(t)\sum_{n}\hat{\delta}\left(t-t^{n}\right)-A_{-}\left(w_{j}\right)y(t)\sum_{f}\hat{\delta}\left(t-t_{j}^{f}\right) dtdwj=A+(wj)x(t)nδ^(ttn)A(wj)y(t)fδ^(ttjf)

​ ※因此,在突触后发射脉冲时权重增加,权重的变化量取决于突触前脉冲留下的轨迹。同样的,权重在突触前脉冲时减少,这个量取决于先前突触后脉冲留下的轨迹。

3、依赖权重的硬边界与软边界:

在这里插入图片描述

由于生物合理性,最好将突触权重保持在一个范围内:

w m i n < w j < w m a x w^{min}<w_j<w^{max} wmin<wj<wmax

通过适当的选择函数 A + ( ω j ) A_+(\omega_j) A+(ωj) A − ( ω j ) A_{-}(\omega_j) A(ωj)可以实现上述目标。即软边界如下:

A + ( w j ) = ( w m a x − w j ) η + A_+(w_j)=(w^{max}-w_j)\eta_{+} A+(wj)=(wmaxwj)η+

A − ( w j ) = ( w j − w m i n ) η − A_-(w_j)=(w_j-w^{min})\eta_- A(wj)=(wjwmin)η

另外还有选择被称为硬边界:

A + ( w j ) = θ ( w m a x − w j ) η + A_+(w_j)=\theta(w^{max}-w_j)\eta_+ A+(wj)=θ(wmaxwj)η+

A − ( w j ) = θ ( w j − w m i n ) η − A_-(w_j)=\theta(w_j-w^{min})\eta_- A(wj)=θ(wjwmin)η

其中 Θ ( x ) \Theta(x) Θ(x) 表示Heaviside阶跃函数。

在这里插入图片描述

​ 在实际中,硬边界意味着按照固定参数 η + \eta_+ η+, η − \eta_- η更新规则,直到到达边界为止;软边界意味着,对于大权重,突触的抑制大于增强;对于小权重,突触的增强大于抑制。

4、all-to-all & Nearest Neighbor:

在这里插入图片描述

​ 一般STDP模型的窗函数W的和遍历了所有的突触前脉冲和所有的突触后脉冲,所有的脉冲对的贡献相等,这样的情况被称为all-to-all。

​ 也有可能限制相互作用因此只有最近邻的脉冲作用。突触后脉冲的增强也可能仅依赖于最近的突触前脉冲时间。为了实现这一点,假设轨迹变量x在突触前脉冲的时刻增加到一定量, a + ( x ) = 1 − x − a_+(x)=1-x_- a+(x)=1x, x − x_- x表示更新前变量x的值。换句话说,x的更新不是积累的,而是总是固定的值1,因此以前脉冲的影响将被忽略。

​ 当然也可以考虑加一个时间窗,或者使用k近邻。

5、Triplet-STDP

在这里插入图片描述

​ 如果假设STDP实验中的基本的增强不是成对的相互作用,而是两个突触后脉冲和一个突触前脉冲的三重态相互作用,那么STDP实验中的频率依赖性就可以被解释。如果其中一个与两个突触后轨迹与y1和y2按两个不同的时间常数一起工作,而不是单一的轨迹,这样的三重态相互作用可以在模型中实现。这样的模型也与三重态实验兼容,但是基于成对的模型是不行的。

6、自平衡项

​ 除了上面提到的基于paired和triplet-STDP外,人们还可以考虑一种STDP模型,一个孤立的突触前或突触后脉冲即使不和另一个脉冲成对也会导致突触权重的微小变化,该方法在模型中用于产生突触后神经元的总输入的稳态控制。

​ 另一种对STDP模型实现稳态控制的可能是通过设置STDP的窗函数依赖于按秒作为时间尺度运行的平均激发率。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值