STDP

Henry Markram提出STDP,Spike Timing Dependent Plasticity学习方法。它根据神经元学习的先后顺序,调整神经元之间连接的强弱。

对于一个神经元i而言:

如果在其他神经元j传递信息之后,它才产生反应,那么类似于因果关系,它和传递信息的神经元之间连接G(j→i)会加强;

如果它产生反应之后,其他神经元j才传递信息来,那么这个信息就有可能被忽略,即该神经元与传递信息的神经元间的连接G(j→i)会减弱。
用类似(3)中的例子。

如果每次你跳完一段新疆舞后,就给狗食物吃,次数多了,狗在看你跳舞时,变会认为离吃食物时间不远了,而流口水;但是如果每次你在给狗吃东西之后才跳一段新疆舞,那么狗会认为你有病,大倒胃口,“控制”流口水的神经元与传递你跳新疆舞的神经元之间的连接就被减弱了

 

Hebb学习规则

### Brain2 中 STDP 的实现与应用 在脉冲神经网络 (SNNs) 中,突触可塑性机制对于模拟生物神经系统至关重要。其中,尖峰时间依赖的可塑性 (STDP, Spike-Timing-Dependent Plasticity) 是一种重要的学习规则,在脑启发计算模型中广泛采用。 #### STDP 原理概述 STDP 描述了前向神经元和后向神经元之间的时间差如何影响突触权重的变化。当两个神经元之间的活动模式呈现特定顺序时,这种关联会增强或减弱连接强度。具体而言: - 如果前向神经元先于后向神经元发放,则突触权重增加; - 若相反情况发生,即后向神经元早于前向神经元放电,则突触权重减少[^1]。 #### Brain2 实现细节 Brain2 提供了一个灵活框架来定义 SNN 并支持多种类型的 STDP 学习规则。为了配置 STDP 参数并将其应用于具体的突触连接上,可以按照如下方式操作: ```python from brainpy import synapses # 定义两组神经元群体 pre_group = ... post_group = ... # 创建具有 STDP 功能的突触对象 stdp_synapse = synapses.STDP(pre=pre_group, post=post_group, conn='all_to_all', tau_pre=20., # pre-synaptic trace time constant tau_post=20., # post-synaptic trace time constant A_plus=0.01, # weight change factor for potentiation A_minus=-0.012) # weight change factor for depression ``` 上述代码片段展示了如何初始化一组带有 STDP 特性的全连接层突触结构。通过调整 `tau_pre` 和 `tau_post` 可以控制前后膜痕迹衰减速度;而参数 `A_plus` 和 `A_minus` 则决定了每次符合条件的情况下权重更新的比例大小。 #### 使用场景举例 利用 STDP 进行无监督特征提取是一个典型应用场景。在这种情况下,不需要显式的标签信息作为指导信号,而是依靠输入数据本身的空间与时序特性来自适应地优化内部表示形式。例如,在处理自然图像识别任务时,可以通过设置适当的学习率和其他超参使得网络自动发现视觉刺激中的边缘方向偏好等统计规律。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值