Wavio Sequence - UVa 10534 dp

Wavio Sequence 
Input: 
Standard Input

Output: Standard Output

Time Limit: 2 Seconds

 

Wavio is a sequence of integers. It has some interesting properties.

·  Wavio is of odd length i.e. L = 2*n + 1.

·  The first (n+1) integers of Wavio sequence makes a strictly increasing sequence.

·  The last (n+1) integers of Wavio sequence makes a strictly decreasing sequence.

·  No two adjacent integers are same in a Wavio sequence.

For example 1, 2, 3, 4, 5, 4, 3, 2, 0 is an Wavio sequence of length 9. But 1, 2, 3, 4, 5, 4, 3, 2, 2 is not a valid wavio sequence. In this problem, you will be given a sequence of integers. You have to find out the length of the longest Wavio sequence which is a subsequence of the given sequence. Consider, the given sequence as :

1 2 3 2 1 2 3 4 3 2 1 5 4 1 2 3 2 2 1.


Here the longest Wavio sequence is : 1 2 3 4 5 4 3 2 1. So, the output will be 9.

 

Input

The input file contains less than 75 test cases. The description of each test case is given below: Input is terminated by end of file.

 

Each set starts with a postive integer, N(1<=N<=10000). In next few lines there will be N integers.

 

Output

For each set of input print the length of longest wavio sequence in a line.

Sample Input                                   Output for Sample Input

10
1 2 3 4 5 4 3 2 1 10
19
1 2 3 2 1 2 3 4 3 2 1 5 4 1 2 3 2 2 1
5
1 2 3 4 5
 
9
9
1

 



题意:找到最长的n*2+1的序列使得前n+1是严格递增的,后n+1是严格递减的。

思路:前后各扫一遍最长递增子序列。

AC代码如下:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int num[10010],dp[10010],ans1[10010],ans2[10010],len,ans;
int solve(int k)
{ int l=1,r=len,mi;
  while(l<r)
  { mi=(l+r)/2;
    if(dp[mi]<k)
     l=mi+1;
    else
     r=mi;
  }
  return l;
}
int main()
{ int n,i,j,k;
  dp[0]=-1000000000;
  while(~scanf("%d",&n))
  { for(i=1;i<=n;i++)
     scanf("%d",&num[i]);
    len=0;
    for(i=1;i<=n;i++)
    { if(num[i]>dp[len])
      { dp[++len]=num[i];
        ans1[i]=len;
      }
      else
      { k=solve(num[i]);
        dp[k]=num[i];
        ans1[i]=k;
      }
    }
    len=0;
    for(i=n;i>=1;i--)
    { if(num[i]>dp[len])
      { dp[++len]=num[i];
        ans2[i]=len;
      }
      else
      { k=solve(num[i]);
        dp[k]=num[i];
        ans2[i]=k;
      }
    }
    ans=1;
    for(i=1;i<=n;i++)
      ans=max(ans,min(ans1[i],ans2[i])*2-1);
    printf("%d\n",ans);
  }
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值