Wavio Sequence
Input: Standard Input
Output: Standard Output
Time Limit: 2 Seconds
Wavio is a sequence of integers. It has some interesting properties.
· Wavio is of odd length i.e. L = 2*n + 1.
· The first (n+1) integers of Wavio sequence makes a strictly increasing sequence.
· The last (n+1) integers of Wavio sequence makes a strictly decreasing sequence.
· No two adjacent integers are same in a Wavio sequence.
For example 1, 2, 3, 4, 5, 4, 3, 2, 0 is an Wavio sequence of length 9. But 1, 2, 3, 4, 5, 4, 3, 2, 2 is not a valid wavio sequence. In this problem, you will be given a sequence of integers. You have to find out the length of the longest Wavio sequence which is a subsequence of the given sequence. Consider, the given sequence as :
1 2 3 2 1 2 3 4 3 2 1 5 4 1 2 3 2 2 1.
Here the longest Wavio sequence is : 1 2 3 4 5 4 3 2 1. So, the output will be 9.
Input
The input file contains less than 75 test cases. The description of each test case is given below: Input is terminated by end of file.
Each set starts with a postive integer, N(1<=N<=10000). In next few lines there will be N integers.
Output
For each set of input print the length of longest wavio sequence in a line.
Sample Input Output for Sample Input
10 1 2 3 4 5 4 3 2 1 10 19 1 2 3 2 1 2 3 4 3 2 1 5 4 1 2 3 2 2 1 5 1 2 3 4 5 | 9 9 1
|
题意:找到最长的n*2+1的序列使得前n+1是严格递增的,后n+1是严格递减的。
思路:前后各扫一遍最长递增子序列。
AC代码如下:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int num[10010],dp[10010],ans1[10010],ans2[10010],len,ans;
int solve(int k)
{ int l=1,r=len,mi;
while(l<r)
{ mi=(l+r)/2;
if(dp[mi]<k)
l=mi+1;
else
r=mi;
}
return l;
}
int main()
{ int n,i,j,k;
dp[0]=-1000000000;
while(~scanf("%d",&n))
{ for(i=1;i<=n;i++)
scanf("%d",&num[i]);
len=0;
for(i=1;i<=n;i++)
{ if(num[i]>dp[len])
{ dp[++len]=num[i];
ans1[i]=len;
}
else
{ k=solve(num[i]);
dp[k]=num[i];
ans1[i]=k;
}
}
len=0;
for(i=n;i>=1;i--)
{ if(num[i]>dp[len])
{ dp[++len]=num[i];
ans2[i]=len;
}
else
{ k=solve(num[i]);
dp[k]=num[i];
ans2[i]=k;
}
}
ans=1;
for(i=1;i<=n;i++)
ans=max(ans,min(ans1[i],ans2[i])*2-1);
printf("%d\n",ans);
}
}