12.3 门控循环单元:简化LSTM与计算效率

12.3 门控循环单元:简化LSTM与计算效率

门控循环单元(Gated Recurrent Unit, GRU)由Cho等人于2014年提出,是在长短期记忆网络(LSTM)基础上发展而来的一种重要的循环神经网络(RNN)变体[1]。其核心设计目标是在保留LSTM捕获长程依赖能力的前提下,通过简化门控机制合并内部状态来减少模型参数量与计算复杂度,从而获得更高的计算效率和更快的训练收敛速度。GRU因其简洁、高效的特性,在序列建模任务中得到了广泛应用,并常被作为与LSTM比较的基准模型。

12.3.1 设计动机:对LSTM的简化与重构

LSTM通过引入输入门、遗忘门、输出门以及独立的细胞状态(Cell State),成功解决了传统RNN的梯度消失问题。然而,其结构相对复杂,包含三个Sigmoid层、一个 tanh ⁡ \tanh tanh层以及两个状态向量(隐藏状态 h t h_t ht和细胞状态 C t C_t Ct),导致参数量较多,计算开销较大。

GRU的设计哲学源于一个关键问题:能否用更少的门控和状态来实现与LSTM相当的性能? 其简化思路主要体现在两个方面:

  1. 门控数量的精简:将LSTM的输入门遗忘门合并为一个单一的更新门。该门同时负责控制历史信息的保留程度和新信息的纳入程度,简化了信息流的决策过程。
  2. 状态向量的统一取消了独立的细胞状态 C t C_t Ct,将长期记忆和短期记忆的功能合并到单一的**隐藏状态 h t h_t ht**中。这意味着 h t h_t ht同时承担了LSTM中 h t h_t ht(短期记忆/输出)和 C t C_t Ct(长期记忆)的角色。

这种设计使GRU的结构更加紧凑。下图直观对比了LSTM与GRU单元的内部结构差异:

LSTM: [输入门, 遗忘门, 输出门, 细胞状态C, 隐藏状态h]
        |         |        |         |           |
        \_________整合________/         \____合并____/
                   V                           V
GRU:          [更新门, 重置门, 隐藏状态h]

通过上述简化,一个标准的GRU单元通常比一个LSTM单元减少约25%-33%的参数,这直接带来了内存占用降低和每次前向/反向传播计算量减少的优势。

12.3.2 核心机制:更新门与重置门

GRU通过两个门控向量来调控内部信息流:更新门重置门

12.3.2.1 更新门

更新门 z t z_t zt决定了当前时刻应将多少过去隐藏状态 h t − 1 h_{t-1} ht1的信息保留到新的隐藏状态 h t h_t ht中,同时也就决定了应纳入多少候选隐藏状态 h ~ t \tilde{h}_t h~t的新信息
z t = σ ( W z ⋅ [ h t − 1 , x t ] + b z ) z_t = \sigma(W_z \cdot [h_{t-1}, x_t] + b_z) zt=σ(Wz[ht1,xt]+bz)
其中, σ \sigma σ是Sigmoid函数,输出范围在[0, 1]之间。 z t z_t zt越接近1,表明保留的历史信息越多,纳入的新信息越少;反之,则更倾向于用新信息更新状态。

12.3.2.2 重置门

重置门 r t r_t rt决定了在计算候选隐藏状态 h ~ t \tilde{h}_t h~t时,应如何结合过去的信息。它控制前一时刻隐藏状态 h t − 1 h_{t-1} ht1中有多少信息被“重置”或忽略。
r t = σ ( W r ⋅ [ h t − 1 , x t ] + b r ) r_t = \sigma(W_r \cdot [h_{t-1}, x_t] + b_r) rt=σ(W<

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FanXing_zl

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值