利用机器学习的智能网络钓鱼检测方案
在当今时代,世界正朝着自动化迈进,连接到互联网的物体能够自主决策。在这样的环境中,作为人工智能重要组成部分的机器学习,被广泛用于根据数据趋势和数据间的历史关系来设计算法。然而,安全和隐私保护成为了研究界需要应对的关键挑战。本文将介绍一种利用机器学习检测网络钓鱼网站的框架。
1. 人工智能的发展与挑战
人工智能(AI)在解决日常生活问题中扮演着重要角色,对国家的发展也贡献巨大。像谷歌助手、SIRI 和 Cortana 就是 AI 的典型例子。但人们常误以为 AI 仅与机器人相关,实际上机器人只是 AI 借助机器学习和机械工程技术的应用。
如今,科技发展迅速,众多初创组织为获取最大利润、吸引媒体和客户,纷纷采用 AI。据埃森哲预测,到 2035 年,AI 推动的自动化将为全球经济带来 14 万亿美元的增长。不过,AI 系统也面临着各种攻击,其中网络钓鱼攻击备受关注。网络钓鱼是黑客伪装成可信身份窃取宝贵信息的在线手段,它利用的是人类层面的漏洞而非系统层面的漏洞。
以下是全球信息安全调查(GSIS)的部分结果:
| 参数 | 影响 |
| — | — |
| IoT 设备的统一网络安全标准和政策 | 36% |
| 运营损失 | 40% |
| 敏感数据丢失 | 39% |
| 产品质量受损 | 32% |
| 物理财产损坏 | 29% |
| 内部记录损坏 | 29% |
| 客户记录泄露 | 2016 年 32%,2017 年 35% |
| 员工记录泄露 | 2016 年 31%,2017 年 30% |
| 当前员工