基于二阶锥松弛的分布式电源接入配电网潮流求解方法及算例

摘要:在DistFlow模型经二阶锥凸松弛建立潮流模型,结合线路容量约束与网损最小的目标函数,通过cplex求解器实现考虑分布式电源与负荷时序变化的潮流求解。

 一、潮流及线路容量约束

1.考虑负荷时变的配电网DistFlow潮流模型如下:

$-P_{j,t}^{\text{Ioad}}=\text{ }\sum\limits_{k\in j}{\left( {​{P}_{jk,t}}+I_{jk,t}^{\text{2}}{​{r}_{jk}} \right)}-\sum\limits_{i\in j}{​{​{P}_{ij,t}}}$

$-Q_{j, t}^{\mathrm{Ioad}}=\sum_{k=j}\left(Q_{j, t}+I_{j k, t}^2 x_{j k}\right)-\sum_{i, j} Q_{i j, t}$

$U_{i, t}^2=U_{j, t}^2+2\left(P_{i j, t} r_{i j}+Q_{i j, t} x_{i j}\right)+I_{j k, t}^2\left(r_{i j}^2+x_{i j}^2\right)$

$P_{i j, t}^2+Q_{i j, t}^2=U_{i, t} I_{i j, t}$

式中,$P_{i j, t}$$Q_{i j, t}$为t时刻节点i流向节点j的有功功率和无功功率;$r_{i j}$、、$x_{i j}$为支路ij的电阻和电抗;$I_{j k, t}$为t时刻支路jk的电流;$U_{i, t}$为t时刻i节点电压;$P_{j, t}^{\mathrm{Ioad}}$$Q_{j, t}^{\mathrm{Ioad}}$为节点j在 t时刻的有功和无功负荷;

        在此基础上,接入光伏设备,默认光伏最大出力即并网有功功率,不考虑逆变器无功出力,将潮流方程中非线性项进行二阶锥转化,转化后的方程是凸性的,便于优化问题求解,具体方程如下所示:

$P_{j, t}^{\mathrm{pv}, \mathrm{in}}-P_{j, t}^{\mathrm{Ioad}}=\sum_{k \in j}\left(P_{j k, t}+i_{j k, t} r_{j k}\right)-\sum_{i \in j} P_{i j, t}$

$-Q_{j, t}^{\mathrm{Ioad}}=\sum_{k \in j}\left(Q_{j, t}+i_{j k, t} x_{j k}\right)-\sum_{i \in j} Q_{i j, t}$

$v_{i, t}=v_{j, t}+2\left(P_{i j, t} r_{i j}+Q_{i j, t} x_{i j}\right)+i_{i j, t}\left(r_{i j}^2+x_{i j}^2\right)$

$\left\|\begin{array}{c}2 P_{i j, t} \\ 2 Q_{i j, t} \\ i_{i j, t}-v_{j, t}\end{array}\right\|_2 \leqslant i_{i j, t}+v_{j, t} \quad \forall i j \in L$

式中,$P_{j, t}^{\mathrm{PV}, \mathrm{in}}$为t时刻第j光伏并网功率;$v_{j, t}$为t时刻节点j电压的平方;$i_{ij, t}$为t时刻支路ij电流的平方;L为线路集合;

注:Distflow潮流模型及二阶锥凸松弛方法可参考:

        (1)《基于Distflow的最优潮流模型(OPF)--模型推导篇》

 https://zhuanlan.zhihu.com/p/450276292

        (2)马鑫,郭瑞鹏,王蕾,等.基于二阶锥规划的交直流主动配电网日前调度模型[J].电力系统自动化,2018,42(22):144-150.

2.线路容量约束

        配电网线路传输容量约束应满足:

$P_{i, t}^2+Q_{i j, t}^2 \leq S_{\text {line }}^2$

        $S_{\text {line }}$为线路最大传输容量;通过线性化手段转化为下式:

$\left\{\begin{array}{l}-S_{\text {line }} \leq P_{i j, t} \leq S_{\text {line }} \\ -S_{\text {line }} \leq Q_{i j, t} \leq S_{\text {line }} \\ -\sqrt{2} S_{\text {line }} \leq P_{i j, t}+Q_{i j, t} \leq \sqrt{2} S_{\text {line }} \\ -\sqrt{2} S_{\text {line }} \leq P_{i j, t}-Q_{i j, t} \leq \sqrt{2} S_{\text {line }}\end{array}\right.$

二、目标函数

$F=\sum_{t=1}^T \sum^L i_{a c} r_{a c}$

        目标函数为所有时刻总网损最小,电阻是常数,即电流最小。经过二阶锥松弛处理,潮流模型由确定的非线性等式方程变为一个求解域,通过设置目标函数,求得电流最小的结果即为潮流结果。与传统潮流迭代算法相比误差较小。

三、仿真算例

图1 改进IEEE33配电网算例

        在原有的IEEE33节点配电网中加入了分布式光伏,并考虑电源、负荷的时序变化。源荷时序变化系数曲线如下:

图2 源荷系数变化曲线

        在matlab平台使用yalmip工具箱与cplex求解器进行优化求解,得出一日内电压分布与网络损耗如下:

图3 节点电压分布

图4 网络损耗

小结:本章实现考虑分布式电源与负荷时序变化的潮流求解,在此基础上可添加其他设备及约束、考虑逆变器无功功率等,实现新能源配电网优化运行。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值