目标检测在计算机视觉领域扮演着重要角色,它的目标是识别图像或视频中的特定对象并定位它们的位置。在目标检测中,实时性和准确性是两个关键的考量因素。本文将介绍YOLOv8(You Only Look Once version 8)算法,它重新定义了实时目标检测的速度和精度。
YOLOv8是YOLO系列算法的最新版本,它通过一系列创新来提高目标检测的性能。下面我们将逐步解析YOLOv8的原理,并提供相应的源代码示例。
- YOLOv8的网络架构
YOLOv8采用了Darknet作为其基础网络架构。Darknet是一个轻量级的深度学习框架,用于实现卷积神经网络。YOLOv8的网络架构由多个卷积层和池化层组成,以提取图像中的特征。以下是一个简化的网络架构示例:
import torch
import torch.nn as nn
class Darknet(nn