近年来,计算机视觉领域取得了巨大的进展,其中目标检测是一个重要的研究方向。在目标检测领域,YOLO(You Only Look Once)系列算法以其高效的实时性能而闻名。最新发布的YOLOv5/v7/v8版本在原有的基础上进行了原创改进,引入了一种全新的ADH(Asymmetric Dual-Head)非对称多级压缩检测头,从而进一步提升了检测器的性能。
ADH检测头是一种新颖的改进,它采用了非对称的设计,具有多级压缩的能力。这种设计使得检测器在保持高效率的同时,能够更好地捕捉目标的细节和特征。下面我们将详细介绍YOLOv5/v7/v8的原创改进和ADH检测头的工作原理,并提供相应的源代码供参考。
首先,我们来了解一下YOLOv5/v7/v8的原创改进。这些改进主要集中在模型的检测头部分,以提高目标检测的准确性和效率。具体而言,改进包括引入ADH检测头和轻量级优化。
ADH检测头的核心思想是采用非对称的设计。它由两个不对称的子头组成:一个主头和一个辅头。主头负责检测大型目标,而辅头则专注于小型目标的检测。这种非对称设计有效地平衡了不同大小目标的检测能力。此外,ADH检测头还实现了多级压缩,通过逐级缩小特征图的尺寸,提高小目标的检测精度。这种设计使得检测器在保持高效率的同时,能够更好地适应不同尺度目标的识别。
除了ADH检测头,YOLOv5/v7/v8还进行了轻量级优化,以提