XGB-11:随机森林

XGBoost通常用于训练梯度提升决策树和其他梯度提升模型。随机森林使用与梯度提升决策树相同的模型表示和推断,但使用不同的训练算法。可以使用XGBoost来训练独立的随机森林,或者将随机森林作为梯度提升的基模型。这里我们专注于训练独立的随机森林。

XGB从早期开始就有用于训练随机森林的API,而Scikit-Learn在0.82版本之后才有封装。

使用XGBoost API训练独立的随机森林

要启用随机森林训练,必须设置以下参数:

  • booster 应设置为 gbtree,因为正在训练森林。由于这是默认值,通常不需要显式设置此参数。

  • subsample 必须设置为小于 1 的值,以启用对训练样本(行)的随机选择。

  • colsample_by 参数之一必须设置为小于 1 的值,以启用对列的随机选择。通常,colsample_bynode 应设置为小于 1 的值,以在每次树分裂时随机抽样列。

  • num_parallel_tree 应设置为正在训练的森林的大小。

  • num_boost_round 应设置为 1,以防止 XGBoost 提升多个随机森林。请注意,这是train() 的关键字参数,不是参数字典的一部分。

  • 在训练随机森林回归时,应将 eta(别名:learning_rate)设置为 1。

  • random_state 可以用于设置随机数生成器的种子。

其他参数应以类似于梯度提升时设置的方式进行设置。例如,对于回归任务,objective 通常将设置为 reg:squarederror,而对于分类任务,将设置为 binary:logisticlambda 应根据所需的正则化权重进行设置,等等。

如果 num_parallel_treenum_boost_round 都大于 1,则训练将使用随机森林和梯度提升策略的组合。它将执行 num_boost_round 轮,在每一轮中提升 num_parallel_tree 棵树的随机森林。如果未启用提前停止,最终模型将由 num_parallel_tree * num_boost_round 棵树组成。

以下是在 GPU 上使用 xgboost 训练随机森林的示例参数字典:

params = {
  "colsample_bynode": 0.8,
  "learning_rate": 1,
  "max_depth": 5,
  "num_parallel_tree": 100,
  "objective": "binary:logistic",
  "subsample": 0.8,
  "tree_method": "hist",
  "device": "cuda",
}

然后可以按如下方式训练随机森林模型:

bst = train(params, dmatrix, num_boost_round=1)
import xgboost as xgb
from sklearn.datasets import load_diabetes
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error

diabetes = load_diabetes()
X = diabetes.data
y = diabetes.target

# Split the dataset into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Create a DMatrix for XGBoost
dtrain = xgb.DMatrix(X_train, label=y_train)
dtest = xgb.DMatrix(X_test, label=y_test)

# Set parameters for random forest training
params = {
    "booster": "gbtree",
    "subsample": 0.8,
    "colsample_bynode": 0.8,
    "num_parallel_tree": 100,
    "num_boost_round": 1,
    "eta": 1,
    "random_state": 42,
    "objective": "reg:squarederror",
}

# Train the random forest model
model = xgb.train(params, dtrain)

# Make predictions on the test set
y_pred = model.predict(dtest)

# Evaluate the model
mse = mean_squared_error(y_test, y_pred)
print(f"Mean Squared Error: {mse}")

基于 Scikit-Learn-Like API 实现随机森林

XGBRFClassifierXGBRFRegressor 是类似于 Scikit-Learn 的类,提供了随机森林的功能。 它们基本上是 XGBClassifierXGBRegressor 的版本,用于训练随机森林而不是梯度提升, 并相应地调整了一些参数的默认值和含义。具体来说:

  • n_estimators 指定要训练的森林的大小;它被转换为 num_parallel_tree,而不是 boosting 轮数的数量
  • learning_rate 默认设置为 1
  • colsample_bynodesubsample 默认设置为 0.8
  • booster 始终为 gbtree

例如,可以使用以下代码训练一个随机森林回归器:

from sklearn.model_selection import KFold

# Your code ...

kf = KFold(n_splits=2)
for train_index, test_index in kf.split(X, y):
    xgb_model = xgb.XGBRFRegressor(random_state=42).fit(
    X[train_index], y[train_index])

注意,与使用 train() 相比,这些类的参数选择较少。特别是,使用此 API 无法将随机森林与梯度提升结合起来。

import xgboost as xgb
from sklearn.datasets import load_diabetes
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
from xgboost import XGBRFRegressor
from sklearn.model_selection import KFold

diabetes = load_diabetes()
X = diabetes.data
y = diabetes.target

kf = KFold(n_splits=2)
for train_index, test_index in kf.split(X, y):
    xgb_model = xgb.XGBRFRegressor(random_state=42).fit(
    X[train_index], y[train_index])
    
# Make predictions on the test set
y_pred = xgb_model.predict(X_test)

# Evaluate the model
mse = mean_squared_error(y_test, y_pred)
print(f"Mean Squared Error: {mse}")

注意事项

  • XGBoost 使用二阶逼近来近似目标函数。这可能导致与使用目标函数的精确值的随机森林实现不同的结果
  • 在子采样训练样本时,XGBoost 不执行替换操作。每个训练案例在子采样集中可能出现 0 次或 1 次

参考

  • 33
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

uncle_ll

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值