周老师每日提问②(2019/11/21)

文章目录

提问

讨论以下反常积分的敛散性: ∫ 0 + ∞ ln ⁡ ( x + 1 ) x k d x \int_0^{+\infty}\frac{\ln(x+1)}{x^k}dx 0+xkln(x+1)dx

回答

哭了,居然错了,写了一大串,结果竟然败给它?

  • 首先肯定要拆成两部分,因为有两个瑕点: x = 0 , x = + ∞ ⇒ x=0,x=+\infty\Rightarrow x=0,x=+ ∫ 0 + ∞ ln ⁡ ( x + 1 ) x k d x = ∫ 0 1 . . . d x + ∫ 1 + ∞ . . . d x \int_0^{+\infty}\frac{\ln(x+1)}{x^k}dx=\int_0^{1}...dx+\int_1^{+\infty}...dx 0+xkln(x+1)dx=01...dx+1+...dx这里需要两个积分都收敛,原积分才收敛
  • 这就不得不讨论 ln ⁡ ( x + 1 ) \ln(x+1) ln(x+1)这个大愣头了,这次就是败给了他,它特别过分,欺软怕硬, x → 0 + x\to0^+ x0+时它要顶一个x,但 x 趋 于 + ∞ x趋于+\infty x+的时候,它就没辙了,乖乖缩起尾巴,假装自己不存在,也就是 x → + ∞ , ln ⁡ ( 1 + x ) = o ( x ε ) x\to+\infty,\ln(1+x)=o(x^{\varepsilon}) x+,ln(1+x)=o(xε)
  • 所以当x趋于无穷时, ln ⁡ ( x + 1 ) x k = o ( 1 x k − ε ) \frac{\ln(x+1)}{x^k}=o(\frac1{x^{k-\varepsilon}}) xkln(x+1)=o(xkε1)因此只要 k − ε > 1 k-\varepsilon>1 kε>1积分就乖乖收敛,由于 ε \varepsilon ε的任意性,所以 k > 1 k>1 k>1
  • x → 0 + x\to0^+ x0+时, ln ⁡ ( x + 1 ) x k ∼ 1 x k − 1 \frac{\ln(x+1)}{x^k}\sim\frac1{x^{k-1}} xkln(x+1)xk11因此 k − 1 < 1 , 即 k < 2 k-1<1,即k<2 k1<1,k<2 ∫ 0 1 \int_0^1 01的积分才收敛
  • 综上, 1 < k < 2 1<k<2 1<k<2时,积分收敛

总结

要牢记大愣头 ln ⁡ ( x ) \ln(x) ln(x)的各种性质,除了以上 ln ⁡ ( x ) = o ( x ε ) ( x → + ∞ ) \ln(x)=o(x^\varepsilon)(x\to+\infty) ln(x)=o(xε)(x+) ln ⁡ ( x + 1 ) ∼ x ( x → 0 + ) \ln(x+1)\sim x(x\to0^+) ln(x+1)x(x0+)
还有不等式 1 n + 1 < ln ⁡ ( 1 + 1 n ) < 1 n \frac{1}{n+1}<\ln(1+\frac1n)<\frac1n n+11<ln(1+n1)<n1也即 x x + 1 < ln ⁡ ( 1 + x ) < x \frac{x}{x+1}<\ln(1+x)<x x+1x<ln(1+x)<x

  • 这道题没做对的主要原因是对 x → 0 x\to0 x0时, ln ⁡ ( x + 1 ) ∼ x \ln(x+1)\sim x ln(x+1)x这点不敏感
  • 同时被一个结论影响了判断,即 ∫ 0 + ∞ 1 x p d x \int_0^{+\infty}\frac1{x^p}dx 0+xp1dx ∀ p ∈ R \forall p\in \R pR都发散
1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 、4下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合;、下载 4使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合;、 4下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.m或d论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 、1资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

universe_1207

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值