3.2 边缘分布

边缘分布函数

  • ( X , Y ) (X,Y) (X,Y)是二维随机变量,分布函数为 F ( x , y ) F(x,y) F(x,y)
  • X , Y X,Y X,Y也是随机变量,也拥有属于自己的分布函数,记为 F X ( x ) , F Y ( y ) F_X(x),F_Y(y) FX(x),FY(y),称为二维随机变量 ( X , Y ) 关 于 X , Y (X,Y)关于X,Y (X,Y)X,Y的边缘分布函数
  • F X ( x ) = P { X ≤ x } = F ( x , + ∞ ) F_X(x)=P\{X\le x\}=F(x,+\infty) FX(x)=P{Xx}=F(x,+)
  • f X ( x ) = ∫ − ∞ ∞ f ( x , y ) d y f_X(x)=\int_{-\infty}^{\infty}f(x,y)dy fX(x)=f(x,y)dy

二维正态分布

  • 若二维随机变量 ( X , Y ) (X,Y) (X,Y)满足: f ( x , y ) = 1 2 π σ 1 σ 2 1 − ρ 2 exp ⁡ { − 1 2 ( 1 − ρ 2 ) [ ( x − μ 1 ) 2 σ 1 2 − 2 ρ ( x − μ 1 ) ( y − μ 2 ) σ 1 σ 2 + ( y − μ 2 ) 2 σ 2 2 ] } \begin{aligned} f(x, y)=& \frac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{1-\rho^{2}}} \exp \left\{\frac{-1}{2\left(1-\rho^{2}\right)}\left[\frac{\left(x-\mu_{1}\right)^{2}}{\sigma_{1}^{2}}\right.\right.\\ &\left.\left.-2 \rho \frac{\left(x-\mu_{1}\right)\left(y-\mu_{2}\right)}{\sigma_{1} \sigma_{2}}+\frac{\left(y-\mu_{2}\right)^{2}}{\sigma_{2}^{2}}\right]\right\} \end{aligned} f(x,y)=2πσ1σ21ρ2 1exp{2(1ρ2)1[σ12(xμ1)22ρσ1σ2(xμ1)(yμ2)+σ22(yμ2)2]}
  • σ 1 > 0 , σ 2 > 0 , − 1 < ρ < 1 \sigma_1>0,\sigma_2>0,-1<\rho<1 σ1>0,σ2>0,1<ρ<1
  • ( X , Y ) (X,Y) (X,Y)为服从 μ 1 , μ 2 , σ 1 , σ 2 , ρ \mu_{1}, \mu_{2}, \sigma_{1}, \sigma_{2}, \rho μ1,μ2,σ1,σ2,ρ的二维正态分布,记为 ( X , Y ) ∼ N ( μ 1 , μ 2 , σ 1 2 , σ 2 2 , ρ ) (X, Y) \sim N\left(\mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, \rho\right) (X,Y)N(μ1,μ2,σ12,σ22,ρ)
  • f X ( x ) , f Y ( y ) f_X(x),f_Y(y) fX(x),fY(y)

  • f X ( x ) = ∫ − ∞ ∞ f ( x , y ) d y f_X(x)=\int_{-\infty}^{\infty}f(x,y)dy fX(x)=f(x,y)dy
  • 换元, ( y − μ 2 ) 2 σ 2 2 − 2 ρ ( x − μ 1 ) ( y − μ 2 ) σ 1 σ 2 = ( y − μ 2 σ 2 − ρ x − μ 1 σ 1 ) 2 − ρ 2 ( x − μ 1 ) 2 σ 1 2 \begin{array}{l} \frac{\left(y-\mu_{2}\right)^{2}}{\sigma_{2}^{2}}-2 \rho \frac{\left(x-\mu_{1}\right)\left(y-\mu_{2}\right)}{\sigma_{1} \sigma_{2}} \\ \quad=\left(\frac{y-\mu_{2}}{\sigma_{2}}-\rho \frac{x-\mu_{1}}{\sigma_{1}}\right)^{2}-\rho^{2} \frac{\left(x-\mu_{1}\right)^{2}}{\sigma_{1}^{2}} \end{array} σ22(yμ2)22ρσ1σ2(xμ1)(yμ2)=(σ2yμ2ρσ1xμ1)2ρ2σ12(xμ1)2 f X ( x ) = 1 2 π σ 1 σ 2 1 − ρ 2 e − ( x − μ 1 ) 2 2 σ 1 2 ∫ − ∞ ∞ e − 1 2 ( 1 − ρ 2 ) ( y − μ 2 σ 2 − ρ x − μ 1 σ 1 ) 2 d y f_{X}(x)=\frac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{1-\rho^{2}}} \mathrm{e}^{-\frac{\left(x-\mu_{1}\right)^{2}}{2 \sigma_{1}^{2}}} \int_{-\infty}^{\infty} \mathrm{e}^{-\frac{1}{2\left(1-\rho^{2}\right)}\left(\frac{y- \mu_{2}}{\sigma_{2}}-\rho \frac{x-\mu_{1}}{\sigma_{1}}\right)^{2}} \mathrm{d} y fX(x)=2πσ1σ21ρ2 1e2σ12(xμ1)2e2(1ρ2)1(σ2yμ2ρσ1xμ1)2dy t = 1 1 − ρ 2 ( y − μ 2 σ 2 − ρ x − μ 1 σ 1 ) t=\frac{1}{\sqrt{1-\rho^2}}(\frac{y-\mu_2}{\sigma_2}-\rho\frac{x-\mu_1}{\sigma_1}) t=1ρ2 1(σ2yμ2ρσ1xμ1),得 f X ( x ) = 1 2 π σ 1 e − ( x − μ 1 ) 2 2 σ 1 2 ∫ − ∞ ∞ e − t 2 / 2 d t f X ( x ) = 1 2 π σ 1 e − ( x − μ 1 ) 2 2 σ 1 2 , − ∞ < x < ∞ \begin{array}{c} f_{X}(x)=\frac{1}{2 \pi \sigma_{1}} \mathrm{e}^{-\frac{\left(x-\mu_{1}\right)^{2}}{2{\sigma_1}^{2}}} \int_{-\infty}^{\infty} \mathrm{e}^{-t^{2} / 2} \mathrm{d} t \\ f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma_{1}} \mathrm{e}^{-\frac{\left(x-\mu_{1}\right)^{2}}{2{\sigma_1}^{2}}}, \quad-\infty<x<\infty \end{array} fX(x)=2πσ11e2σ12(xμ1)2et2/2dtfX(x)=2π σ11e2σ12(xμ1)2,<x<
  • 于是: f Y ( y ) = 1 2 π σ 2 e − ( y − μ 2 ) 2 2 σ 2 2 , − ∞ < y < ∞ f_{Y}(y)=\frac{1}{\sqrt{2 \pi} \sigma_{2}} \mathrm{e}^{-\frac{\left(y-\mu_{2}\right)^{2}}{2{\sigma_2}^{2}}}, \quad-\infty<y<\infty fY(y)=2π σ21e2σ22(yμ2)2,<y<
  • 总结:
    • 若二维随机变量 ( X , Y ) (X,Y) (X,Y)服从二维正态分布,则 X , Y X,Y X,Y分别服从一维正态分布
    • 给定相同参数 μ 1 , μ 2 , σ 1 , σ 2 \mu_1,\mu_2,\sigma_1,\sigma_2 μ1,μ2,σ1,σ2,不同 ρ \rho ρ对应了不同的二维正态分布
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

universe_1207

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值