【架构实战】在使用 LLM 大模型服务过程中,怎样实现数据脱敏? 给出一个数据安全的脱敏方案:具体的方案原理,实操步骤,编程语言使用golang

本文介绍了如何在使用LLM大模型服务时,利用Golang实现数据脱敏,包括方案原理、操作步骤和完整示例代码。通过对称加密算法和密钥管理,确保数据安全。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【架构实战】在使用 LLM 大模型服务过程中,怎样实现数据脱敏? 给出一个数据安全的脱敏方案:具体的方案原理,实操步骤,编程语言使用golang

数据脱敏是指在数据处理过程中,将敏感数据信息脱离原始数据,以避免数据泄露和隐私侵犯。在使用 ChatGPT 进行自然语言处理时,也需要对数据进行脱敏。本文将介绍一种数据安全的脱敏方案,包括方案原理、实操步骤和 Markdown 格式的示例代码。

方案原理

本方案基于对称加密算法和密钥管理技术实现数据脱敏。具体步骤如下:

  1. 生成密钥对

使用对称加密算法生成密钥对,包括一个公钥和一个私钥。公钥用于加密数据,私钥用于解密数据。在本方案中,我们使用 Golang 的 crypto/randcrypto/aes 包生成密钥对。

  1. 加密数据

将敏感数据进行加密,并使用公钥进行加密。在本方案中,我们使用 Golang 的 crypto/aes 包将数据进行加密。

  1. 存储加密后的数据和密钥

将加密后的数据和公钥存储到数据库中。私钥需要保存在安全的地方,例如加密密钥管理系

量化一个LLM(大型语言模型)的过程主要涉及两个步骤:参数量化和模型压缩。这里以深度学习框架如TensorFlow或PyTorch为例[^1]: 1. **参数量化**: - **选择量化类型**: 可能包括整数量化(如INT8/INT4)、固定点量化(FP16/FP8)或者混合精度量化(比如BERT采用的混合精度)。 ```python from tensorflow.keras.layers import QuantizeLayer # 对权重或激活层进行量化 quantizer = QuantizeLayer(input_range=(-128, 127), output_range=(0, 255)) quantized_weight = quantizer(model.get_layer('your_layer').kernel) ``` 2. **模型压缩**: - **剪枝**: 删除对模型性能影响较小但占内存较大的参数。 ```python from tensorflow_model_optimization.sparsity import keras as sparsity pruning_params = {'pruning_schedule': sparsity.PolynomialDecay(initial_sparsity=0.50, final_sparsity=0.90, begin_step=0, end_step=end_step)} model = sparsity.prune_low_magnitude(model, **pruning_params) ``` - **知识蒸馏**: 使用一个已经训练好的教师模型指导学生模型的学习,从而达到减小模型规模的目的。 ```python teacher_model = load_pretrained_large_model() student_model = create_small_model() distiller = tf.keras.Model(student_model.input, [student_model.output, teacher_model.output]) ``` 3. **评估与微调**: 完成量化和压缩后,通常需要重新训练或微调模型以适应量化后的特性。 请注意,实际操作可能因使用的库和工具而异,上述代码片段仅作为概念示例。在实施时,请查阅相关文档或库的具体教程。
评论 44
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值