文章目录
- 深度学习中的优化算法(Optimization)
- 1. 深度学习中的优化问题
- 2. 基于梯度的优化算法
- 3. 常用的梯度下降算法
- 4. 其他优化算法
-
-
- ⚪ [Averaging Weights Leads to Wider Optima and Better Generalization](https://0809zheng.github.io/2020/11/29/swa.html):随机权重平均 SWA
- ⚪ [Gradientless Descent: High-Dimensional Zeroth-Order Optimization](https://0809zheng.github.io/2022/03/09/gradientless.html):不计算梯度的零阶优化方法
- ⚪ [Gradients without Backpropagation](https://0809zheng.github.io/2022/02/19/fgradient.html):使用前向梯度代替反向传播梯度
- ⚪ [Lookahead](https://0809zheng.github.io/2020/12/14/lookahead.html): 快权重更新k次,慢权重更新1次
- ⚪ [Amos](https://0809zheng.github.io/2022/12/02/amos.html)
-
- ⚪ 参考文献
深度学习中的优化算法(Optimization)
Optimization in Deep Learning.
本文目录:
- 深度学习中的优化问题
- 基于梯度的优化算法
- 常用的梯度下降算法
- 其他优化算法
1. 深度学习中的优化问题
深度学习中的优化(optimization)问题通常是指在已有的数据集上实现最小的训练误差(training error)。记深度网络的待优化参数为 θ \theta θ