深度学习中的优化算法(Optimization)

本文深入探讨深度学习中的优化问题,重点分析基于梯度的优化算法,包括超参数选择如学习率和批量大小的影响,以及不同的理解角度,如动力系统、逼近理论和概率视角。此外,介绍了常用梯度下降算法的优缺点,并提到了一些新兴的优化技术,如随机权重平均(SWA)、零阶优化和前向梯度下降等,旨在帮助读者更好地理解和应对深度学习的优化挑战。
摘要由CSDN通过智能技术生成
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值