中文情感分析综述——近年来技术进步及应用现状

随着互联网的发展,中文情感分析成为热门话题,深度学习技术在此领域展现出巨大潜力。本文概述了深度学习在NLP中的重要性,探讨了数据集的选择与处理、模型结构设计、优化技术、性能评估,并展望了未来发展方向。重点讨论了深度学习模型在情感分析中的应用,包括CNN、RNN和Transformer等,强调了可解释性在模型评估中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:禅与计算机程序设计艺术

1.简介

一、引言

随着互联网的迅速发展,越来越多的人依赖于网络进行信息获取、交流沟通、购物支付等方面的需求。其中,用户表达的情感具有非常丰富的表现形式,如肯定、否定、褒贬、惊讶、喜爱等,而如何从海量的用户评论中提取出价值观念并进行自动化分类,成为当下热门话题。一方面,自然语言处理技术已经取得长足进步;另一方面,由于用户评论的特殊性,传统的基于规则和统计方法往往无法取得理想的效果。因此,基于深度学习技术的中文情感分析技术成为解决这一难题的新方向。 随着大数据时代的到来,传统的基于规则和统计的方法已经无法适应新的计算资源要求和海量的数据量,这也促使了学术界和工业界对机器学习和深度学习技术的广泛应用。深度学习在NLP(Natural Language Processing)领域有着举足轻重的地位,它可以自动地识别文本中的语义特征并提取文本的内在含义。通过深度神经网络的训练,模型能够对输入的文本进行分类、预测或推断出相应的情感倾向,从而达到情感分析任务的目的。在本文中,我们将探讨这一方向上的最新研究成果,包括以下几个方面:

  • 概念理解和基本术语:对深度学习在NLP中的重要性及其工作原理做出全面的阐述。
  • 数据集的选择、构建、划分和处理:对目前的中文情感分析数据集进行全面且系统的评估,
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值