作者:禅与计算机程序设计艺术
1.简介
一、引言
随着互联网的迅速发展,越来越多的人依赖于网络进行信息获取、交流沟通、购物支付等方面的需求。其中,用户表达的情感具有非常丰富的表现形式,如肯定、否定、褒贬、惊讶、喜爱等,而如何从海量的用户评论中提取出价值观念并进行自动化分类,成为当下热门话题。一方面,自然语言处理技术已经取得长足进步;另一方面,由于用户评论的特殊性,传统的基于规则和统计方法往往无法取得理想的效果。因此,基于深度学习技术的中文情感分析技术成为解决这一难题的新方向。 随着大数据时代的到来,传统的基于规则和统计的方法已经无法适应新的计算资源要求和海量的数据量,这也促使了学术界和工业界对机器学习和深度学习技术的广泛应用。深度学习在NLP(Natural Language Processing)领域有着举足轻重的地位,它可以自动地识别文本中的语义特征并提取文本的内在含义。通过深度神经网络的训练,模型能够对输入的文本进行分类、预测或推断出相应的情感倾向,从而达到情感分析任务的目的。在本文中,我们将探讨这一方向上的最新研究成果,包括以下几个方面:
- 概念理解和基本术语:对深度学习在NLP中的重要性及其工作原理做出全面的阐述。
- 数据集的选择、构建、划分和处理:对目前的中文情感分析数据集进行全面且系统的评估,