作者:禅与计算机程序设计艺术
1.简介
马尔科夫决策过程(Markov Decision Process, MDP)是一种强化学习(Reinforcement Learning)方法。它描述了一个动态系统,其中包含一个状态空间S,一个动作空间A,以及从状态到状态转移概率P和从状态到奖励R的反馈机制。MDP可以看成是一个交互式的环境,在每个时间步上,智能体(agent)会根据当前状态选择一个动作,执行这个动作后会收到一个奖励r和下一个状态s',并更新自身的状态到s'。智能体根据自身的策略和环境奖励进行决策,最后达到最大化累计奖励的目标。本文将通过使用Python语言编程展示如何实现一个简单的MDP环境,并通过贪心算法、蒙特卡洛树搜索、Q-learning等经典算法对其求解。 首先给出马尔科夫决策过程的定义:
A Markov decision process (MDP) is a way of representing decision making in uncertain environments that do not have a perfect model of the environment and where an agent interacts with its environment to maximize rewards over time. The goal of the agent is to learn how to make decisions u