ARIMA模型原理解析

ARIMA模型是时间序列预测领域的经典统计模型,适用于非平稳数据的平滑处理。本文介绍了ARIMA的基本概念、参数定义、参数估计方法,并通过股票价格预测和气象数据预测案例展示了其在实际中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:禅与计算机程序设计艺术

1.简介

ARIMA(AutoRegressive Integrated Moving Average,自动回归移动平均)模型是时间序列预测领域中应用最广泛、效果也最好的一种统计模型。它由三个要素组成——自回归移动平均模型、整合移动平均模型和ARI系数。本文将从ARIMA模型的历史及发展演变出发,详尽阐述ARIMA模型的基础知识,并结合代码实例,给读者提供直观易懂的讲解。

1.1 历年国内外研究热点

在过去几年里,基于ARMA模型的研究热点逐渐凸显出来。根据对不同研究的总结,主要分为以下几个方面:

1974年,Wold于美国研究所发表了一篇题为“Stock Price Forecasting Using AR Models”的文章,提出了第一版ARIMA模型。此后,在经济、金融、保险等多个领域中,ARIMA模型都得到了广泛的应用。

1982年,Bai和 Ng从南京大学一起开始研究ARIMA模型,并提出了自己的改进版本ARIMAX模型,其中包括多元自回归模型。

1987年,Chopra和Lutkepohl发表了一篇题为“Non-Stationarity in Time Series Analysis: A Survey and a New Model”的文章,系统总结了非平稳的时间序列分析的现状及其原因&#

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值