作者:禅与计算机程序设计艺术
1.简介
ARIMA(AutoRegressive Integrated Moving Average,自动回归移动平均)模型是时间序列预测领域中应用最广泛、效果也最好的一种统计模型。它由三个要素组成——自回归移动平均模型、整合移动平均模型和ARI系数。本文将从ARIMA模型的历史及发展演变出发,详尽阐述ARIMA模型的基础知识,并结合代码实例,给读者提供直观易懂的讲解。
1.1 历年国内外研究热点
在过去几年里,基于ARMA模型的研究热点逐渐凸显出来。根据对不同研究的总结,主要分为以下几个方面:
1974年,Wold于美国研究所发表了一篇题为“Stock Price Forecasting Using AR Models”的文章,提出了第一版ARIMA模型。此后,在经济、金融、保险等多个领域中,ARIMA模型都得到了广泛的应用。
1982年,Bai和 Ng从南京大学一起开始研究ARIMA模型,并提出了自己的改进版本ARIMAX模型,其中包括多元自回归模型。
1987年,Chopra和Lutkepohl发表了一篇题为“Non-Stationarity in Time Series Analysis: A Survey and a New Model”的文章,系统总结了非平稳的时间序列分析的现状及其原因&#