作者:禅与计算机程序设计艺术
文章目录
1.简介
Apache Hive是基于Hadoop生态系统的分布式数据仓库框架。HiveQL语言是Hive中使用的SQL查询语言,它允许用户通过简单的SQL语句进行复杂的数据分析。但是由于其执行机制的限制导致Hive在某些场景下的性能较差。因此,为了提高Hive的查询性能,本文从查询优化、执行计划生成、查询执行等多个方面对Hive SQL性能进行了全面的分析与总结。
文章结构:文章首先回顾了Hive的历史,然后详细阐述了Hive SQL的语法和查询优化技术,包括Hive SQL执行流程,子查询合并优化,Hive表分区设计,查询计划优化和执行效率,表达式运算优化等。最后,将这些方法和技术融会贯通,对常见问题进行解答并给出优化建议。
2.Hive简介
2.1.什么是Hive?
Apache Hive(淘宝内部广泛使用的开源数据仓库)是一个开源的分布式数据仓库,它提供的数据定义语言(DDL)、数据操纵语言(DML)和处理语言(Query Language)用来描述数据的模式、数据存放位置及如何从外部数据源检索数据。Hive 提供了一个类似Oracle数据库中的查询语言的结构化查询语言(Structured Query Language)。Hive可以分析存储在HDFS中的大规模数据集并支持复杂的联机分析。它支持多种文件格式、压缩算法、列加密等功能。Hive提供的查询优化器能够自动地识别有效的索引,并利用MapReduce等计算框架实现高效的数据处理。Hive不但可以运行于本地集群,也可以通过Apache Hadoop MapReduce或Apac
Apache Hive是基于Hadoop的分布式数据仓库,通过Hive SQL进行复杂数据查询。本文深入探讨Hive SQL语法、查询优化技术,包括查询执行流程、子查询合并、表分区设计和查询计划优化,旨在提升Hive查询性能。
订阅专栏 解锁全文
684

被折叠的 条评论
为什么被折叠?



