作者:禅与计算机程序设计艺术
1.背景介绍
Deep Learning是目前最火热的AI技术之一。它已经成为解决各种复杂问题的必备武器,在图像识别、文本处理、语音识别等多个领域都取得了惊人的成果。而在训练这些模型时,往往需要大量的参数设置才能达到很好的效果。比如,对于卷积神经网络(CNN)来说,经典的超参数如学习率、正则化系数、滤波器尺寸、池化窗口大小等都需要进行精心调节。然而手动调整这些参数是一个非常耗时的工作,特别是当超参数数量庞大、参数之间存在交互关系时。因此,如何高效地完成超参数优化任务变得至关重要。
一种流行的方法是使用基于贝叶斯优化(Bayesian optimization)的方法进行超参数搜索。这种方法通过拟合目标函数的指标或损失函数来选择下一个最佳超参数的值。这种搜索方法不需要人工参与,能够找到全局最优解。但是由于优化过程中的局部最优解可能会导致过拟合或性能下降,所以一些更加有效的改进策略应运而生。例如,在每一步迭代中引入一些噪声或惩罚项,从而鼓励模型在探索更多可能性的同时保持稳定性。此外,在贝叶斯优化的过程中加入模型结构正则化项也能提升模型鲁棒性和泛化能力。
本文将对深度学习领域常用的超参数搜索方法——贝叶斯优化、模型正则化与惩罚项以及使用方法进行详细阐述。
2.核心概念与联系 贝叶斯优化(Bayesian optimization),即利用概率统计的方式来找出全局最优解。它的基