1.背景介绍
1.1 语音识别的重要性
语音识别技术在人工智能领域的重要性不言而喻。随着智能设备的普及,人们对语音识别技术的需求日益增强。无论是手机、电视、车载系统,还是智能家居,语音识别都被广泛应用。
1.2 Transformer的出现
Transformer模型自从2017年由Google提出以来,凭借其优秀的性能和广泛的适用性,已经在许多NLP任务中取得了显著的成果。但是,它在语音识别领域的应用实践还相对较少。
2.核心概念与联系
2.1 语音识别
语音识别是将人类的声音转化为文字的技术。它涉及到声音的采集、预处理、特征提取、模式匹配等多个步骤。
2.2 Transformer
Transformer是一种基于自注意力(Self-Attention)机制的模型,它摒弃了传统的RNN和CNN,全程只使用注意力机制,从而在处理长距离依赖问题上有着显著的优势。
3.核心算法原理具体操作步骤
3.1 数据预处理
在语音识别任务中,首先需要对原始的音频数据进行预处理,包括降噪、预加重、分帧、窗函数、快速傅里叶变换等