GPU与FPGA加速:硬件赋能AI应用
1. 背景介绍
1.1 人工智能的兴起
人工智能(AI)在过去几年中经历了爆炸式增长,成为推动科技创新的核心动力。从语音识别和计算机视觉,到自然语言处理和推荐系统,AI已广泛应用于各个领域。然而,训练和部署AI模型需要大量计算资源,这对传统的CPU架构提出了巨大挑战。
1.2 硬件加速的必要性
为满足AI算法对计算能力的巨大需求,硬件加速技术应运而生。专用硬件如GPU(图形处理器)和FPGA(现场可编程门阵列)能够提供比CPU更强大的并行计算能力,从而显著加速AI应用的训练和推理过程。
1.3 GPU和FPGA的优势
- GPU具有大量的核心,能高效处理矩阵和向量运算,非常适合加速深度学习等AI算法。
- FPGA可根据需求进行硬件级编程,提供高度的灵活性和能效比,在推理加速等场景表现出色。
2. 核心概念与联系
2.1 并行计算
并行计算是GPU和FPGA加速AI应用的核心。传统CPU采用串行架构,一次只能执行一条指令;而GPU和FPGA能够同时执行成千上万条指令,极大提升了计算吞吐量。
2.2 数据流编程模型
GPU和