1. 背景介绍
1.1 自然语言处理与词表示
自然语言处理(NLP)是人工智能领域的一个重要分支,旨在使计算机能够理解和处理人类语言。词表示是NLP中的一个基础任务,它将词汇映射到向量空间,使得语义相似的词在向量空间中距离更近。传统的词表示方法,如one-hot编码,存在维度灾难和语义鸿沟等问题。
1.2 词嵌入技术的兴起
词嵌入技术是近年来NLP领域的一项重大突破,它能够有效地解决传统词表示方法的缺陷。Word2Vec是其中一种常用的词嵌入模型,它通过神经网络学习词语的向量表示,能够捕捉词语之间的语义关系。
2. 核心概念与联系
2.1 分布式假设
Word2Vec模型基于分布式假设,即:上下文相似的词语,其语义也相似。例如,“猫”和“狗”经常出现在相似的语境中,因此它们的语义也比较接近。
2.2 CBOW和Skip-Gram模型
Word2Vec包含两种主要的模型架构:
- 连续词袋模型(CBOW):CBOW模型根据上下文词语预测目标词语。例如,给定上下文词语“这只可爱