Word2Vec词嵌入:CBOW和SkipGram算法

本文介绍了Word2Vec在自然语言处理中的应用,详细阐述了分布式假设、CBOW和Skip-Gram模型的工作原理,并提供了Gensim和TensorFlow的实现示例,探讨了词嵌入的未来趋势和挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 背景介绍

1.1 自然语言处理与词表示

自然语言处理(NLP)是人工智能领域的一个重要分支,旨在使计算机能够理解和处理人类语言。词表示是NLP中的一个基础任务,它将词汇映射到向量空间,使得语义相似的词在向量空间中距离更近。传统的词表示方法,如one-hot编码,存在维度灾难和语义鸿沟等问题。

1.2 词嵌入技术的兴起

词嵌入技术是近年来NLP领域的一项重大突破,它能够有效地解决传统词表示方法的缺陷。Word2Vec是其中一种常用的词嵌入模型,它通过神经网络学习词语的向量表示,能够捕捉词语之间的语义关系。

2. 核心概念与联系

2.1 分布式假设

Word2Vec模型基于分布式假设,即:上下文相似的词语,其语义也相似。例如,“猫”和“狗”经常出现在相似的语境中,因此它们的语义也比较接近。

2.2 CBOW和Skip-Gram模型

Word2Vec包含两种主要的模型架构:

  • 连续词袋模型(CBOW):CBOW模型根据上下文词语预测目标词语。例如,给定上下文词语“这只可爱
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值