打破视野狭窄:深度强化学习中的部分观测马尔可夫决策过程

本文深入探讨了深度强化学习在部分观测马尔可夫决策过程(POMDP)中的应用,从背景介绍到核心概念,再到算法原理与实际应用。文章详细阐述了POMDP与MDP的区别,信念状态的概念,以及值迭代和策略迭代等求解算法,并通过Tiger问题的代码实例展示了POMDP的解决方法。此外,还讨论了POMDP在机器人控制、游戏AI和自然语言处理等领域的重要作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 背景介绍

1.1 深度强化学习的兴起

近年来,深度强化学习(Deep Reinforcement Learning,DRL)取得了令人瞩目的成就,在游戏、机器人控制、自然语言处理等领域展现出强大的能力。DRL 智能体通过与环境交互,学习最优策略,实现目标最大化。

1.2 马尔可夫决策过程 (MDP)

马尔可夫决策过程 (Markov Decision Process,MDP) 是强化学习的基础框架,描述了智能体与环境交互的过程。MDP 由以下要素构成:

  • 状态空间 (State space):所有可能状态的集合。
  • 动作空间 (Action space):智能体可以采取的所有动作的集合。
  • 状态转移概率 (State transition probability):智能体在当前状态下执行某个动作后,转移到下一个状态的概率。
  • 奖励函数 (Reward function):智能体在某个状态下执行某个动作后获得的奖励。

1.3 部分观测问题

在许多实际应用中,智能体无法观测到环境的完整状态

马尔可夫决策过程 (MDP) 已被广泛用作动态决策中的宝贵工具,这是在微观和宏观层面上运作的经济主体的核心关注点。 决策者关于国家的信息常常是不完整的; 因此,泛化到部分可观察的 MDP(POMDP)。 不幸的是,POMDP 可能需要很大的状态和/或动作空间,从而造成众所周知的“维度诅咒”。 然而,最近的计算贡献和超快的计算机帮助消除了这种诅咒。 本文介绍并解决了称为“歧义诅咒”的第二个诅咒,它指的是这样一个事实,即准确的转移概率通常难以量化,而且相当模糊。 例如,对于一个关注动态设定通货膨胀率以控制失业率的货币当局来说,在任何给定的通货膨胀率下失业率的动态往往是不明确的。 同样,在工人-工作匹配中,工人-工作匹配/熟练程度的动态通常是不明确的。 本文通过开发称为模糊 POMDP (APOMDP) 的 POMDP 的泛化来解决“歧义诅咒”,它不仅允许决策者考虑不完美的状态信息,而且还解决了正确概率模型方面不可避免的歧义的过渡。 重要的是,本文将各种结构结果从 POMDPs 扩展到 APOMDPs。 这些结果使决策者能够做出稳健的决策。 鲁棒性是通过使用 a-maximin 期望效用 (a-MEU) 实现的,它 (a) 区分歧义和歧义态度,(b) 避免了传统 maximin 方法的过度保守,以及 (c) 被发现适用于实验室各种选择行为的实验,包括投资组合选择。 提供的结构结果也有助于处理“维度灾难”,因为它们显着简化了对最佳策略的搜索。 该分析通过开发由于模型歧义导致的最大奖励损失的界限,为所提出的方法确定了性能保证。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值