打破视野狭窄:深度强化学习中的部分观测马尔可夫决策过程

本文深入探讨了深度强化学习在部分观测马尔可夫决策过程(POMDP)中的应用,从背景介绍到核心概念,再到算法原理与实际应用。文章详细阐述了POMDP与MDP的区别,信念状态的概念,以及值迭代和策略迭代等求解算法,并通过Tiger问题的代码实例展示了POMDP的解决方法。此外,还讨论了POMDP在机器人控制、游戏AI和自然语言处理等领域的重要作用。
摘要由CSDN通过智能技术生成

1. 背景介绍

1.1 深度强化学习的兴起

近年来,深度强化学习(Deep Reinforcement Learning,DRL)取得了令人瞩目的成就,在游戏、机器人控制、自然语言处理等领域展现出强大的能力。DRL 智能体通过与环境交互,学习最优策略,实现目标最大化。

1.2 马尔可夫决策过程 (MDP)

马尔可夫决策过程 (Markov Decision Process,MDP) 是强化学习的基础框架,描述了智能体与环境交互的过程。MDP 由以下要素构成:

  • 状态空间 (State space):所有可能状态的集合。
  • 动作空间 (Action space):智能体可以采取的所有动作的集合。
  • 状态转移概率 (State transition probability):智能体在当前状态下执行某个动作后,转移到下一个状态的概率。
  • 奖励函数 (Reward function):智能体在某个状态下执行某个动作后获得的奖励。

1.3 部分观测问题

在许多实际应用中,智能体无法观测到环境的完整状态

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值