1. 背景介绍
随着人工智能技术的不断发展,越来越多的数据被用于训练机器学习模型。然而,由于数据隐私和安全等问题,许多数据无法被集中到一个中心化的服务器上进行训练。为了解决这个问题,Google在2017年提出了一种新的机器学习方法——Federated Learning(联邦学习),它可以在不暴露用户数据的情况下进行模型训练。
Federated Learning是一种分布式机器学习方法,它将模型训练过程从中心化的服务器转移到了用户设备上。在Federated Learning中,每个用户设备都拥有自己的数据,而模型的训练是在本地设备上进行的。每个设备训练出的模型会被上传到中心化的服务器上进行聚合,从而得到一个全局的模型。这种方法不仅可以保护用户数据的隐私,还可以减少数据传输和存储的成本,提高模型的训练效率。
2. 核心概念与联系
Federated Learning的核心概念包括:联邦学习、本地模型更新、模型聚合和差分隐私。
联邦学习:联邦学习是一种分布式机器学习方法,它将模型训练过程从中心化的服务器转移到了用户设备上。在联邦学习中,每个设备都拥有自己的数据,而模型的训练是在本地设备上进行的。每个设备训练出的模型会被上传到中心化的服务器上进行聚合,从而得到一个全局的模型。
本地模型更新:在联邦学习中&#