BiSeNet原理与代码实例讲解

本文深入介绍了BiSeNet在语义分割中的应用,该网络通过双路结构处理高分辨率空间信息和低分辨率上下文信息,解决传统方法的空间信息丢失和计算开销问题。BiSeNet在保持高速推理的同时,达到了优秀的分割效果,适用于自动驾驶、医学影像分析、虚拟现实等多个领域。

BiSeNet原理与代码实例讲解

1. 背景介绍

近年来,随着深度学习技术的快速发展,语义分割(Semantic Segmentation)已成为计算机视觉领域的一个研究热点。语义分割旨在对图像中的每个像素进行分类,即预测每个像素所属的类别,从而实现对图像的像素级别理解。它在无人驾驶、医学影像分析、虚拟/增强现实等领域有广泛的应用前景。

传统的语义分割方法主要基于全卷积网络(FCN),通过编码器提取特征,解码器恢复空间分辨率,实现端到端的像素分类。但是,这类方法存在两个主要问题:1)编码器降采样导致的空间信息丢失;2)解码器恢复分辨率的计算开销大。为了解决这些问题,学界提出了一系列改进方案,如空洞卷积、多尺度融合、编码器级联等。

在此背景下,北京大学等机构的研究者在ECCV 2018上提出了BiSeNet(Bilateral Segmentation Network)。它采用双路网络结构,分别处理高分辨率的空间细节信息和低分辨率的上下文语义信息,并引入Attention细化模块选择性地融合两路信息,以实现又快又好的语义分割。BiSeNet不仅在准确性上达到业界领先水平,而且推理速度非常快,可满足实时性要求。

2. 核心概念与联系

要理解BiSeNet,首先需要了解以下几个核心概念:

  • 语义分割(Semantic Segmentation):对图像中每个像素进行类别标注,是像素级别的多分类问题。
  • 全卷积网络(FCN):将传统CNN中的全连接层改为卷积层,实现任意尺寸图像的端到端dense prediction。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

禅与计算机程序设计艺术

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值