BiSeNet原理与代码实例讲解
1. 背景介绍
近年来,随着深度学习技术的快速发展,语义分割(Semantic Segmentation)已成为计算机视觉领域的一个研究热点。语义分割旨在对图像中的每个像素进行分类,即预测每个像素所属的类别,从而实现对图像的像素级别理解。它在无人驾驶、医学影像分析、虚拟/增强现实等领域有广泛的应用前景。
传统的语义分割方法主要基于全卷积网络(FCN),通过编码器提取特征,解码器恢复空间分辨率,实现端到端的像素分类。但是,这类方法存在两个主要问题:1)编码器降采样导致的空间信息丢失;2)解码器恢复分辨率的计算开销大。为了解决这些问题,学界提出了一系列改进方案,如空洞卷积、多尺度融合、编码器级联等。
在此背景下,北京大学等机构的研究者在ECCV 2018上提出了BiSeNet(Bilateral Segmentation Network)。它采用双路网络结构,分别处理高分辨率的空间细节信息和低分辨率的上下文语义信息,并引入Attention细化模块选择性地融合两路信息,以实现又快又好的语义分割。BiSeNet不仅在准确性上达到业界领先水平,而且推理速度非常快,可满足实时性要求。
2. 核心概念与联系
要理解BiSeNet,首先需要了解以下几个核心概念:
- 语义分割(Semantic Segmentation):对图像中每个像素进行类别标注,是像素级别的多分类问题。
- 全卷积网络(FCN):将传统CNN中的全连接层改为卷积层,实现任意尺寸图像的端到端dense prediction。
 
                       
                             
                         
                             
                             
                           
                           
                            
 该专栏为热销专栏榜 第48名
该专栏为热销专栏榜 第48名 超级会员免费看
超级会员免费看
                                         
                             
                             本文深入介绍了BiSeNet在语义分割中的应用,该网络通过双路结构处理高分辨率空间信息和低分辨率上下文信息,解决传统方法的空间信息丢失和计算开销问题。BiSeNet在保持高速推理的同时,达到了优秀的分割效果,适用于自动驾驶、医学影像分析、虚拟现实等多个领域。
本文深入介绍了BiSeNet在语义分割中的应用,该网络通过双路结构处理高分辨率空间信息和低分辨率上下文信息,解决传统方法的空间信息丢失和计算开销问题。BiSeNet在保持高速推理的同时,达到了优秀的分割效果,适用于自动驾驶、医学影像分析、虚拟现实等多个领域。
           
                   订阅专栏 解锁全文
                订阅专栏 解锁全文
                 
             
       
           
                 
                 
                 
                 
                 
                
               
                 
                 
                 
                 
                
               
                 
                 扫一扫
扫一扫
                     
                     
              
             
                   1065
					1065
					
 被折叠的  条评论
		 为什么被折叠?
被折叠的  条评论
		 为什么被折叠?
		 
		  到【灌水乐园】发言
到【灌水乐园】发言                                
		 
		 
    
   
    
   
             
					 
					 
					


 
            