知识图谱与语义理解原理与代码实战案例讲解
作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming
关键词:知识图谱,语义理解,实体识别,关系抽取,推理引擎,自然语言处理,NLP
1. 背景介绍
1.1 问题的由来
随着互联网和物联网的发展,数据量呈爆炸式增长。然而,这些海量数据往往缺乏结构化信息,使得机器难以理解和利用。因此,如何有效地组织、表示和检索这些非结构化的数据成为了研究热点。其中,知识图谱作为一种高度结构化的知识表示形式应运而生,旨在解决这一难题。
1.2 研究现状
知识图谱在多个领域得到了广泛的应用,包括搜索引擎、个性化推荐系统、智能问答、自动驾驶等。近年来,基于深度学习的方法被引入知识图谱领域,如使用神经网络进行实体识别、关系抽取以及推理等。同时,语义理解技术也取得了显著进步,通过自然语言处理(NLP)方法解析文本中的意图和实体关系。
1.3 研究意义
知识图谱与语义理解的研究对于提升人工智能系统的性能至关重要。它们能够帮助系统从大量无序的数据中提取出有用的信息,增强系统的决策能力,并提供更准确、个性化的服务。此外,通过更好地理解人类语言,可以推动人机交互的智能化水平,促进跨学科间的融合创新。
1.4 本文结构
本篇文章将深入探讨知识图谱的基本概念、构建与维护机制,以及语义理解的核心原理和技术。随后,我们将通过一个实际的项

订阅专栏 解锁全文
9013

被折叠的 条评论
为什么被折叠?



