Unsupervised Learning 原理与代码实战案例讲解
1. 背景介绍
1.1 问题的由来
在机器学习领域,我们经常遇到大量的数据集,这些数据可能没有明确的标签或者分类信息。这就是所谓的无监督学习场景,比如在聚类分析中,数据本身并没有预先定义好的类别,而是需要算法自行探索和发现潜在的结构和模式。无监督学习对于探索数据内在规律、数据降维、特征提取以及异常检测等领域具有重要价值。
1.2 研究现状
随着大数据时代的到来,无监督学习的研究和应用日益广泛。从经典的聚类算法如K-means、层次聚类到现代深度学习中的自动编码器、自回归模型以及生成对抗网络(GANs)等,都为无监督学习提供了丰富的理论基础和实践工具。此外,无监督学习在推荐系统、自然语言处理、图像识别等多个领域都有着广泛的应用。
1.3 研究意义
无监督学习对于处理大规模、高维度、无标签数据集至关重要。它能够揭示数据背后的结构、规律和潜在关系,为后续的有监督学习提供更好的特征表示,同时也能够独立地生成新颖的数据样本,增强模型的泛化能力和鲁棒性。
1.4 本文结构
本文将深入探讨无监督学习的概念、算法、数学模型