Data Preprocessing 原理与代码实战案例讲解
1.背景介绍
数据预处理(Data Preprocessing)是机器学习和数据挖掘中的一个关键步骤。在现实世界中,原始数据通常是不完整、不一致、有噪声的,甚至包含许多错误。将原始数据直接用于分析或训练机器学习模型,会导致误导性结果。因此,在数据应用前,必须对其进行预处理。
数据预处理可以帮助我们:
- 处理无效值、缺失值、异常值等问题
- 消除数据中的噪声
- 规范化、标准化数据,使其落在特定区间
- 转换、整合数据,使其适用于挖掘任务
高质量的数据是高质量挖掘结果的前提。数据预处理虽然繁琐,但对后续工作的顺利开展至关重要。
2.核心概念与联系
数据预处理涉及的核心概念包括:
- 数据清洗(Data Cleaning):处理无效值、缺失值、异常值等。
- 数据集成(Data Integration):整合多个数据源、解决数据冗余等问题。
- 数据变换(Data Transformation):规范化、聚集、泛化数据。
- 数据归约(Data Reduction):降维、数值归约、数据压缩等。
这些步骤相辅相成,共同构成完整的数据预处理流程:
graph LR
A[原始数据] --> B[数据清洗]
B -