Data Preprocessing 原理与代码实战案例讲解

Data Preprocessing 原理与代码实战案例讲解

1.背景介绍

数据预处理(Data Preprocessing)是机器学习和数据挖掘中的一个关键步骤。在现实世界中,原始数据通常是不完整、不一致、有噪声的,甚至包含许多错误。将原始数据直接用于分析或训练机器学习模型,会导致误导性结果。因此,在数据应用前,必须对其进行预处理。

数据预处理可以帮助我们:

  • 处理无效值、缺失值、异常值等问题
  • 消除数据中的噪声
  • 规范化、标准化数据,使其落在特定区间
  • 转换、整合数据,使其适用于挖掘任务

高质量的数据是高质量挖掘结果的前提。数据预处理虽然繁琐,但对后续工作的顺利开展至关重要。

2.核心概念与联系

数据预处理涉及的核心概念包括:

  • 数据清洗(Data Cleaning):处理无效值、缺失值、异常值等。
  • 数据集成(Data Integration):整合多个数据源、解决数据冗余等问题。
  • 数据变换(Data Transformation):规范化、聚集、泛化数据。
  • 数据归约(Data Reduction):降维、数值归约、数据压缩等。

这些步骤相辅相成,共同构成完整的数据预处理流程:

graph LR
A[原始数据] --> B[数据清洗]
B -
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

禅与计算机程序设计艺术

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值