异常检测(Anomaly Detection) - 原理与代码实例讲解
1. 背景介绍
异常检测是机器学习和数据挖掘领域的一个重要研究方向,在实际应用中有着广泛的需求。异常是指数据集中明显偏离其余数据的个体,通常表现为异常点、异常序列等形式。异常数据的存在会对数据分析和挖掘的结果产生负面影响,因此检测和处理异常数据对于提高数据质量和分析结果的可靠性具有重要意义。
异常检测在诸多领域有着重要应用,例如:
- 欺诈检测:检测信用卡欺诈、保险欺诈等异常交易行为
- 入侵检测:及时发现网络入侵、恶意攻击等网络安全事件
- 设备健康监测:监控工业设备运行情况,及早预警异常并安排检修
- 疾病预警:通过对人体生理指标的异常检测,实现疾病的早期预警
总的来说,异常检测对保障数据安全、设备安全、人身健康安全等方面有着不可或缺的作用。研究高效、准确、可解释的异常检测方法,对于学术研究和工业应用都具有重要价值。
2. 核心概念与联系
要理解异常检测的原理和方法,需要先明确几个核心概念:
- 正常样本(Normal Instances):符合数据整体分布规律的样本
- 异常样本(Anomalous Instances):明显偏离整体分布的少数样本,通常表现为异常点、异常序列等
- 特征(Features):描述样本属性的变量,用于刻画样本的特点
- 异常分数(Anomaly Score):评估样本异常程度的分值,越高代表样本越异