L1正则化:特征选择与稀疏模型的利器

L1正则化:特征选择与稀疏模型的利器

1. 背景介绍

1.1 机器学习中的过拟合问题

在机器学习中,我们经常面临模型过拟合的问题。过拟合是指模型在训练数据上表现很好,但在新的、未见过的数据上泛化能力很差。造成过拟合的主要原因是模型过于复杂,包含了太多的参数,以至于模型过度拟合了训练数据中的噪声和特异点。

1.2 降低过拟合的方法

为了降低过拟合的风险,我们通常采用以下策略:

  • 增加训练样本的数量
  • 降低模型复杂度
  • 使用正则化技术

在实际应用中,训练样本的数量往往是有限的,我们无法无限制地增加样本数量。因此,控制模型复杂度,使用正则化技术就显得尤为重要。

1.3 正则化技术概述

常用的正则化技术包括:

  • L1正则化(Lasso回归)
  • L2正则化(Ridge回归)
  • 弹性网络(Elastic Net,L1和L2的结合)
  • Dropout

本文将重点介绍L1正则化,探讨它在特征选择和稀疏模型学习中的重要作用。

2. 核心概念与联系

2.1 L1范数与L2范数

在正则化技术中,我们经常用到L1范数和L2范数的概念。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值