L1正则化:特征选择与稀疏模型的利器
1. 背景介绍
1.1 机器学习中的过拟合问题
在机器学习中,我们经常面临模型过拟合的问题。过拟合是指模型在训练数据上表现很好,但在新的、未见过的数据上泛化能力很差。造成过拟合的主要原因是模型过于复杂,包含了太多的参数,以至于模型过度拟合了训练数据中的噪声和特异点。
1.2 降低过拟合的方法
为了降低过拟合的风险,我们通常采用以下策略:
- 增加训练样本的数量
- 降低模型复杂度
- 使用正则化技术
在实际应用中,训练样本的数量往往是有限的,我们无法无限制地增加样本数量。因此,控制模型复杂度,使用正则化技术就显得尤为重要。
1.3 正则化技术概述
常用的正则化技术包括:
- L1正则化(Lasso回归)
- L2正则化(Ridge回归)
- 弹性网络(Elastic Net,L1和L2的结合)
- Dropout
本文将重点介绍L1正则化,探讨它在特征选择和稀疏模型学习中的重要作用。
2. 核心概念与联系
2.1 L1范数与L2范数
在正则化技术中,我们经常用到L1范数和L2范数的概念。