西向普哑人的手语距译模型设计与应用
1. 背景介绍
1.1 问题的由来
随着科技的飞速发展,人工智能在各个领域都取得了显著的成果。在语言处理领域,自然语言处理(NLP)和机器翻译技术得到了广泛的应用。然而,对于聋哑人这一特殊群体,传统的语音和文字交流方式存在诸多不便。手语作为一种重要的交流方式,却难以实现与普通人的顺畅沟通。因此,开发一款能够将手语翻译成文字或语音的翻译工具,对于促进聋哑人与社会的融合具有重要意义。
1.2 研究现状
近年来,基于深度学习的手语识别与翻译技术取得了显著的进展。现有的手语翻译系统主要分为以下几种:
- 基于图像的手语识别:通过提取手语视频或图片中的关键信息,实现手语到文字的转换。常见的算法包括卷积神经网络(CNN)、循环神经网络(RNN)等。
- 基于动作捕捉的手语识别:通过捕捉手部动作,将动作信息转换为文字。常见的算法包括运动捕捉技术、深度学习等。
- 基于语音的手语识别:通过分析手语动作产生的语音信号,实现手语到文字的转换。常见的算法包括语音识别技术、深度学习等。
然而,现有的手语翻译系统在翻译质量、实时性、易用性等方面还存在一定的局限性。例如,基于图像的手语识别系统对光线、角度等环境因素敏感,识别准确率有待提高;基于动作捕捉的手语识别系统需要专业的运动捕捉设备,成本较高;基于语音的手语识别系统难以区分不同的手势和语音,识别准确率也