粒子群算法(Particle Swarm Optimization) - 原理与代码实例讲解
作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming
关键词:
粒子群优化,PSO,优化算法,全局搜索,局部搜索,进化算法,编程实例
1. 背景介绍
1.1 问题的由来
优化问题在许多领域都有着广泛的应用,如工程优化、机器学习、人工智能等。优化问题通常涉及从一组可能的解中找到最优解,这需要搜索算法来实现。粒子群优化(Particle Swarm Optimization,PSO)是一种基于群体智能的优化算法,因其简单、高效、易于实现等优点,在众多领域得到了广泛应用。
1.2 研究现状
自1995年提出以来,PSO算法及其改进版本得到了广泛的研究和发展。近年来,PSO算法在解决复杂优化问题上展现出良好的性能,成为优化领域的研究热点。
1.3 研究意义
PSO算法作为一种有效的全局优化算法,具有以下意义: